
Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 1 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 1

Peter’s Interactive Pages

User’s Guide

Click on any of these topics to jump to them:

 FieldStateController Using Adding Properties

 MultiFieldStateController Using Adding Properties

 FSCOnCommand Using Adding Properties

 MultiFSCOnCommand Using Adding Properties

 CalculationController Using Adding Properties

 NumericTextBoxCalcItem ConstantCalcItem ListConstantCalcItem CheckStateCalcItem

 ConditionCalcItem ParenthesisCalcItem CalcControllerCalcItem

 TextCounter Control Using Adding Properties

 Context Menu Control Using Adding Properties

 Interactive Hints Using Adding PopupViews Adding On Page

 Enhanced ToolTips Using

 Enhanced Buttons Using Adding Properties

 ChangeMonitor Using Page-Level Properties Button Properties

 Direct Keystrokes to Click Buttons

 Custom Submit Function

 Table Of Contents

 Page Level Properties and Methods

 JavaScript Support Functions

 Troubleshooting

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 2 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 2

Table of Contents

License Information...8

Platform Support ...8

Technical Support and Other Assistance...9
Troubleshooting Section of this Guide ..9
Developer’s Kit..9
PeterBlum.Com MessageBoard...9
Getting Product Updates..9
Technical Support ..9

WHAT DOES PETER’S DATA ENTRY SUITE DO?.. 11

PETER’S INTERACTIVE PAGES OVERVIEW .. 14

FieldStateControllers Overview ...15

CalculationController Overview ..15

TextCounter Overview..15

ContextMenu Overview ..16

Interactive Hints Overview...16

Enhanced ToolTips Overview...16

Enhanced Buttons Overview...16

ChangeMonitor Overview...17

Direct Keystrokes to Click Buttons Overview...17

FIELDSTATECONTROLLER AND MULTIFIELDSTATECONTROLLER CONTROLS.. 18

Features ..19

Using the FieldStateControllers..20
The Condition ..20
Controls That Run The FieldStateController ...21
Controls To Change...22
Attribute Values To Change ..23
Extending the Attributes with Your Own Code...24

Client-Side Function: The Run Function ...24
Server Side Event Handler...25

Updating Validators...26
Changing Visibility on a Complex Control ...27

Solution..27
Toggling States ..28
Running FieldStateControllers On Demand ..29
Controls That Have Child Controls ...30

GetChild Method ...30
Installing the GetChild Method ...31

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 3 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 3

Example: FieldStateController...32

Example: MultiFieldStateController ...33

Adding the FieldStateController Control ..34

Adding the MultiFieldStateController Control ..38

Properties of FieldStateController And MultiFieldStateController ...43
Invoke the Change Properties ..44
Controls To Change Properties..46
Attributes To Change Properties..47

Properties of ConditionTrue and ConditionFalse ..47
Update Validators Properties ...50
When to Use the Control Properties ..51
Behavior Properties ...53

FSCONCOMMAND AND MULTIFSCONCOMMAND CONTROLS... 55

Features ..56

Using the FSCOnCommand Controls..57
Controls That Run The FSCOnCommand Control..57
Controls To Change...58
Attribute Values To Change ..59
Updating Validators...60
Changing Visibility on a Complex Control ...61

Example: The DateTextBox control ..61
Solution..61

Selectively Running the Control..62

Example: FSCOnCommand ...63

Example: MultiFSCOnCommand..64

Adding the FSCOnCommand Control ..65

Adding the MultiFSCOnCommand Control...67

Properties of FSCOnCommand And MultiFSCOnCommand ..70
Invoke the Change Properties ..71
Controls To Change Properties..73
Attributes To Change Properties..74
Update Validators Properties ...77
When To Use The Control Properties..78
Behavior Properties ...80

CALCULATIONCONTROLLER.. 82

Features ..83

Using the CalculationController...84
Creating the Expression: The CalcItem classes ...85

PeterBlum.DES.NumericTextBoxCalcItem ..85
PeterBlum.DES.ConstantCalcItem ..86
PeterBlum.DES.ListConstantsCalcItem ..87
PeterBlum.DES.CheckStateCalcItem ..88

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 4 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 4

PeterBlum.DES.ParenthesisCalcItem ..90
PeterBlum.DES.ConditionCalcItem ..91
PeterBlum.DES.CalcControllerCalcItem...93
General Guidelines for CalcItem objects ...94

Displaying The Result ...95
Using the Result in Validators and Conditions ..96
Using the Result in Your Server-Side Code ..97
Running CalculationControllers On Demand ..98

Adding the CalculationController Control..99

Properties on CalculationController..105
Calculating The Value Properties ..106
Showing The Value Properties ..107
When to Use the Control Properties ..109
Behavior Properties ...112

Properties on CalcItem Classes ..114
Properties Common To All CalcItem Classes ...115
Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class ..116
Properties for the PeterBlum.DES.ListConstantsCalcItem Class ..117
Properties for the PeterBlum.DES.CheckStateCalcItem Class ..120
Properties for the PeterBlum.DES.ConstantCalcItem Class..121
Properties for the PeterBlum.DES.ParenthesisCalcItem Class ..122
Properties for the PeterBlum.DES.ConditionCalcItem Class ..123
Properties for the PeterBlum.DES.CalcControllerCalcItem Class ..127
Adding Custom Code to a CalcItem ..128

The Client-Side Function and the CustomCalcFunctionName Property ...129
The Server Side Event Handler and CustomCalculation Property...130

Subclassing CalculationController...132

INTERACTIVE HINTS... 133

Features ..134
When using Labels ..134
When using PopupViews...134
Other ways to display Hints...135
Interactively Customizing the Hint Text..135

Using Interactive Hints..136
Displaying Hints: The PeterBlum.DES.HintFormatter Class ..137
Page-Level Hint Settings: The PeterBlum.DES.Globals.Page.HintManager Property...138

Showing Validation Errors In The Hints ...138
Adding HintFormatters to the SharedHintFormatters Property ...139

When using a PopupView: AddSharedHintPopupView() ...140
When using a Label on the Page: AddSharedHintOnPage()..142
Using Your Own HintFormatter definition: AddSharedHintFormatter() ..144

Defining PopupViews..145
View an existing definition..146
Edit a definition ...148
Add a definition ...148
Rename a definition ...148
Delete a definition..148
Creating your own Callouts ...149
Adding your own Callouts to the PopupView Definition ..150

Using PopupViews ..151
Defining Hints shown on the Page...152

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 5 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 5

Using a Label...152
Using a Panel containing a Label...153
Customize How Hints Appear: The Formatter Function ...154

Using Hints shown on the Page ...155
Customize the Text of the Hint: The Text Function ..156
Show and Hide the Hint On Demand ..157

Providing an Initialization Function ..157

Adding a Hint to any Control Programmatically: PeterBlum.DES.Globals.Page.AddHintToControl Method...........159

Properties for the PeterBlum.DES.HintFormatter Class...161

Properties on the PeterBlum.DES.Globals.Page.HintManager Property...164

Properties for the PeterBlum.DES.HintPopupView Class...166
Overall Appearance Properties ..167
Header Properties...168
Body Properties ...171
Footer Properties..173
Callout Properties ..175
Positioning Properties ..177
Other Properties ...178

ENHANCED TOOLTIPS ... 181

Features ..182

Using Enhanced ToolTips ...183
HintManager.AddToolTipPopupViewToControl() method ..184

TEXTCOUNTER CONTROL... 185

Features ..185

Using the TextCounter Control ..186
Connecting To a TextBox..186
Establishing the Limits ..187
Setting the Text and Style Sheets...188

Tokens in Messages ...189

Adding a TextCounter Control ..190

Properties of the TextCounter Control..192
TextBox Properties ..192
Message Properties ..194
Appearance Properties ...197
Behavior Properties ...200

CONTEXT MENU CONTROL ... 201

Features ..202

Using the Context Menu..203
Overall Appearance ...204
Menu Command Rows ..205

Providing a Script for your Command...206

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 6 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 6

Appearance of Menu Command Rows ..208
Adding a PeterBlum.DES.MenuCommandItem to the ContextMenu ...210
Properties for PeterBlum.DES.MenuCommandItem...213

Menu Separator Rows..215
Appearance of Menu Separator Rows ...215
Adding a PeterBlum.DES.MenuSeparator to the ContextMenu..216
Properties for PeterBlum.DES.MenuCommandSeparator ...217

Menu Hint Rows..218
Appearance of Menu Hint Rows..218
Adding a PeterBlum.DES.MenuHint to the ContextMenu ..219
Properties for PeterBlum.DES.MenuHint..221

Click Items: Adding Controls Which Popup The ContextMenu ...222
The PeterBlum.DES.ClickItem Class ..222
Inserting Variables Into Your Scripts ..223
Adding a PeterBlum.DES.ClickItem to the ContextMenu ..224
Properties for PeterBlum.DES.ClickItem ..226

Adding a Context Menu ..227

Complete Example...229

Properties of the Context Menu..230
Menu Structure Properties ...230
Menu Item Appearance Properties...231
Overall Appearance Properties ..234
Popup Behavior Properties ..235
Behavior Properties ...236
Popup Location Properties...242

ENHANCED BUTTONS.. 243

Features ..243

Using the Enhanced Buttons...244

Adding an Enhanced Button...245

Properties on Enhanced Buttons ..247
Behavior Properties ...247
ChangeMonitor Properties ...248
Validation Properties ...249
Hint and ToolTip Properties ..250
Appearance Properties ...253

Programmatically Adding These Features to Non-DES Buttons ..254
The PeterBlum.DES.SubmitBehavior Class..255

Properties ...255
Constructors...257

CHANGEMONITOR .. 258

Features ..259

Using the ChangeMonitor ...260
The ChangeMonitor Property ..261
Changing the State of Buttons ...262

Using server side code ...262

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 7 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 7

Making Data Entry Controls Notify Changes..263
Using the NativeControlExtender..263
Using the ChangeMonitor.RegisterForChanges() Method ..263

Using the FieldStateController ..264
The PeterBlum.DES.ChangeMonitorCondition Class ...264

Using your own JavaScript Code...265
Validation Group and ChangeMonitor Groups..266

Properties of the PeterBlum.DES.Globals.Page.ChangeMonitor..267

ChangeMonitor Server Side Methods..269

ChangeMonitor JavaScript Functions...271

DIRECT KEYSTROKES TO CLICK BUTTONS... 272

Using the NativeControlExtender ..273

Using the RegisterKeyClicksControl() Method...274
PeterBlum.DES.Globals.Page.RegisterKeyClicksControl Method ...275

CUSTOM SUBMIT FUNCTION... 276

Using The Custom Submit Function ..276

Page-Level Properties..277

ADDITIONAL TOPICS FOR USING THESE CONTROLS... 278

PAGE LEVEL PROPERTIES AND METHODS.. 279

Properties on PeterBlum.DES.Globals.Page ...279
Validation Properties ...281

JAVASCRIPT SUPPORT FUNCTIONS ... 282

General Utilities ...282

ADDING YOUR JAVASCRIPT TO THE PAGE.. 285

Embedding the ClientID into your Script..285

Debugging Your JavaScript..286

TROUBLESHOOTING .. 287

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 8 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

License Information
This document includes information for the Peter’s Interactive Pages module in Peter’s Data Entry Suite. If you licensed the
complete Suite or the “Peter’s Interactive Pages” module, you have all features found in this User’s Guide, unless otherwise
noted.

Note: The FieldStateController and MultiFieldStateController work best when they have access to the Condition objects that
are part of the Peter’s Professional Validation module.

The CalculationController works best when it has access to the DES TextBoxes that are part of the DES: Peter’s Interactive
Pages module.

Platform Support
This product was written for Microsoft ASP.NET. It supports all versions from 1.0 up. It includes assemblies specific to
ASP.NET 1.x and ASP.NET 2. It is compatible with all browsers, scaling down automatically when the browser has a
limitation. In some cases, that means the control turns off its client-side functionality or turns itself off entirely.

This product is designed to scale properly even when the Page’s ClientTarget property causes the HttpBrowserCapabilities
(Request.Browser) to falsely state the browser. In other words, you can’t fool these controls with an upLevel clientTarget.
This is absolutely necessary because feeding the wrong browser will generate incorrect client side scripts giving the user’s
scripting errors. It was also considered a requirement to hide features that didn’t work on the browser to give the user the best
interface. For more, see “Browser Support” in the General Features Guide.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 9 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Technical Support and Other Assistance
PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Troubleshooting Section of this Guide
This guide includes an extensive set of problems and their solutions. See “Troubleshooting”. This information will often save
you time.

Developer’s Kit
The Developer’s Kit is a free download that provides documentation and sample code for building your own classes with this
framework. It includes:

 Developer’s Guide - Overviews of each class with examples, step-by-step guides, and other tools to develop new classes.

 MSDN-style help file - Browse through this help file to learn about all classes and their members.

 Sample code in C# and VB.

You can download it from http://www.peterblum.com/DES/DevelopersKit.aspx.

PeterBlum.Com MessageBoard
Use the message board at http://groups.yahoo.com/groups/peterblum to discuss issues and ideas with other users.

Getting Product Updates
As minor versions are released (4.0.1 to 4.0.2 is a minor version release), you can get them for free. Go to
http://www.PeterBlum.com/DES/Home.aspx. It will identify the current version at the top of the page. You can read about all
changes in the release by clicking “Release History”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v4.0 to v4.1), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support
You can contact Technical Support at this email address: Support@PeterBlum.com. I (Peter Blum) make every effort to
respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, I request the following of you:

 Please review the Troubleshooting section first. See “Troubleshooting”.

 Please try to include as much information about your web form or the problem as possible. I need to fully
understand what you are seeing and how you have set things up.

 If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger
to determine that it is working in your code or the exact point of failure and error it reports.

 If you are subclassing from my controls, I provide the DES Developer's Kit that includes the Developers Guide.pdf,
Classes And Types help file, and sample files. I can only offer limited assistance as you subclass because this kind
of support can be very time consuming. I am interested in any feedback about my documentation’s shortcomings so I
can continue to improve it.

 I cannot offer general ASP.NET, HTML, style sheet, JavaScript, DHTML, DOM, or Regular Expression mentoring.
If your problem is due to your lack of knowledge in any of these technologies, I will give you some initial help and
then ask you to find assistance from the many tools available to the .Net community. They include:

http://www.peterblum.com/DES/DevelopersKit.aspx�
http://groups.yahoo.com/groups/peterblum�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 10 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

o Books

o www.asp.net forums and tutorials

o Microsoft’s usenet newsgroups such as microsoft.public.dotnet.framework.aspnet. See
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet

o Google searches. (I virtually live in Google as I try to figure things out with ASP.NET.)
http://www.Google.com. Don’t forget to search the “Groups” section of Google!

o http://aspnet.4guysfromrolla.com/, http://www.dotnetjunkies.com, http://www.aspalliance.com/

o For DHTML, Microsoft provides an excellent guide at http://msdn2.microsoft.com/en-
us/library/ms533050.aspx.

o For DOM, start with the DHTML guide. Topics that are also in DOM are noted under the heading
“Standards Information”

o For JavaScript, I recommend http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference.

As customers identify issues and shortcomings with the software and its documentation, I will consider updating these areas.

http://www.asp.net/�
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet�
http://www.google.com/�
http://aspnet.4guysfromrolla.com/�
http://www.dotnetjunkies.com/�
http://www.aspalliance.com/�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 11 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

What does Peter’s Data Entry Suite Do?
Peter’s Data Entry Suite (“DES”) is a suite of ASP.NET controls designed around the concepts of data entry: validation,
entry fields, and interactive behaviors in response to a user’s action. The suite includes several modules that can be purchased
stand-alone. This User’s Guide covers the interactive behaviors which is called the “Peter’s Interactive Pages”.

Peter’s Data Entry Suite was designed to improve upon the form validation concept build into the .Net framework. It
completely replaces Microsoft’s original Validator controls, as they imposed serious limitations on how a Validator can look
and act. As part of the work, extensive client-side JavaScript code was written. This JavaScript code lends itself well to other
client-side tasks, such as formatting the entry of a CurrencyTextBox and setting focus to a field. Since validation is always
part of data entry, Peter’s Data Entry Suite addresses numerous other requirements of a good user interface for data entry.

Here are the major aspects of Peter’s Data Entry Suite:

 Validation – The same idea as the concept introduced by Microsoft, with Validator controls to detect and report errors on
the page. DES provides extensive enhancements over Microsoft’s controls that allow your sites to have a more
professional appearance with Validators and make it much easier to evaluate the data in your web form. Its rich feature
set lets you set a few properties instead of writing custom code and hacks to work around the limitations of Microsoft’s
Validators. It includes 28 Validators and several other controls.

o There are 11 Validators in Peter’s Professional Validation, designed to handle common cases, like required
fields, comparisons and textlength limits.

o There are 14 Validators in Peter’s More Validators, designed to handle more specialized situations like credit
card numbers and duplicate entries amongst several fields.

o There are two Validators designed for you to plug in your own validation logic, the CustomValidator and
IgnoreConditionValidator

o The MultiConditionValidator lets you combine the validation logic of other Validators into one boolean
expression, often avoiding the use of writing code in CustomValidators.

o The ValidationSummary control displays a consolidated list of all errors reported as the page is submitted.

o The RequiredFieldMarker and RequiredFieldDescription controls standardize the user interface for indicating a
field is required.

o The CombinedErrorMessages control merges the error messages from several Validators to save screen real
estate.

o The LocalizableLabel control is an enhanced Label that supports localization. Localization is an important
aspect to DES. Labels are optionally shown in the error messages.

o A variety of button controls and ways to submit the page so that validation is run automatically.

See the Validation User’s Guide.

 TextBoxes – DES provides a number of controls as replacements to Microsoft’s TextBox control.

o Its own TextBox control, the basis for all other textboxes, introduces numerous common client-side tricks for
TextBoxes.

o The IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox handle data entry of these
numeric formats.

o The FilteredTextBox limits entry to the character set of your choice.

o The MultiSegmentDataEntry control combines multiple textboxes and dropdownlists together to handle a single
field that has a distinctive pattern, such as phone numbers and credit card numbers. It is a great substitute for a
masked textbox with a more powerful user interface.

See the TextBoxes User’s Guide.

 Date And Time – Controls for entry of date and time information.

o DateTextBox – Date entry with a popup calendar

o AnniversaryTextBox – Date entry without the year.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 12 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

o MonthYearTextBox – Month and year entry

o TimeOfDayTextBox – Time of day entry

o DurationTextBox – Time duration entry

o Calendar – A very powerful replacement to the native ASP.NET calendar

o MonthYearPicker – Month and year entry using the mouse

o TimePicker – Time entry using the mouse

o Popup versions of Calendar, MonthYearPicker, and TimePicker

o Validators for these controls. There are versions for the DES Validation Framework and Native ASP.NET
Validation Framework if you choose not to use the DES Validation Framework.

See the Date And Time User’s Guide.

 Interactive Pages – There are numerous ways to make your web forms more interactive and user friendly through
JavaScript. These techniques will make your web forms feel more like a window in a Windows application.

o The FieldStateController monitors clicks and changes on a field and modifies other controls. It can modify
almost any attribute of a field: visibility, enabled, style sheet class, value and more. For example, use it when
you want a textbox to be disabled until the user marks a checkbox. There are four versions of the
FieldStateController: FieldStateController, MultiFieldStateController, FSCOnCommand, and
MultiFSCOnCommand.

o The CalculationController lets you describe a calculation that uses the textboxes on the page. It can display the
result of the calculation in a label or another textbox. Validators can validate the result of the calculation. For
example, a RangeValidator can make sure the total of 3 textboxes is within 0 to 100.

o Add a ContextMenu to your web forms, supplying javascript commands to regions and controls within the page.

o The TextCounter monitors the number of keystrokes in a textbox, displaying the count and warning the user as
they near and reach the limits.

o The Interactive Hints system shows a hint as the user moves into a field. The hint can appear in a popup
(floating element) or on the page in a Label or Panel. It can also appear in the browser’s status bar.

o Replace the browser’s ToolTip with DES’s Enhanced ToolTips.

o The ChangeMonitor watches for edits in the page. Until a change is made, selected buttons are disabled. After,
they are enabled.

o Enhanced Buttons with several javascript tricks including showing a confirmation message, disabling until data
is changed (see the ChangeMonitor), and disabling on submit.

o Direct the Enter key to click a specific button. Enhances DES’s TextBoxes with the EnterSubmitsControlID
property.

This User’s Guide addresses these features.

 Input Security – Hackers attack your web site through its inputs – data entry controls, query strings, hidden fields, and
cookies – to access your database (called SQL Injection) and modify your pages with scripts (called Script Injection or
Cross-site scripting). These attacks can be very damaging to a business, destroying data, exposing private customer
information, or exposing customers to content that you would never want on your site. Every public web site should be
designed with a defense system. With Peter’s Input Security, you have that defense system.

Validators play an important role in blocking these attacks. However, they have their limitations. Peter’s Input Security
introduces specialized Validators to detect and block attacks. It also provides a “best practices” framework for protecting
your site against attacks.

See the Input Security User’s Guide.

 General Features – The features throughout this product are supported by these controls and tools:

o PageManager control – Each page has numerous settings. Use this control to apply those settings in without
programming.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 13 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

o Global Settings Editor – A stand-alone Windows application to customize numerous global settings used by
DES.

o NativeControlExtender control – Extends various native controls to support DES Validation, Interactive Hints,
the ChangeMonitor, and more.

o String Lookup System – A mechanism to set most string-type properties from data stored in resources or a
database.

o LocalizableLabel control – The Label control enhanced to support the String Lookup System.

Throughout this product, one of the most important design concepts is to allow expansion through the object-oriented
concepts of subclassing and delegation. This allows you to build your web site the way you want it. The controls are built
upon several discrete object classes. Even the client-side JavaScript is designed for expansion. See the Developer’s Kit to
learn how to program with Peter’s Data Entry Suite.

http://www.peterblum.com/des/developerskit.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 14 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Peter’s Interactive Pages Overview
Peter’s Data Entry Suite (“DES”) focuses on enhancing data entry on your ASP.NET web forms. When you build desktop
(Windows, Mac, Linux, etc) applications, the operating systems provide an interactive graphical user interface, making it
easy to assist the user. HTML has a very limited set of behaviors described in its tags. For example, while it’s easy to set
focus to the first textbox in a Windows application, there is no HTML equivalent.

JavaScript and the document object models specified by the W3C (called “DOM”) and Microsoft (called “DHTML”)
overcomes some of HTML’s deficiencies. DES packages many of the techniques, so that you don’t have to figure them out (a
task made more difficult by the differences between DHTML, DOM, and each browser’s implementation of them).

The Peter’s Interactive Pages uses JavaScript to enhance how the web form interacts with the user and assist them with
their data entry.

 When loading the page:

o Setting focus to a field

o Using the FieldStateControllers to prepare the look of a page

o Use the ChangeMonitor to disable buttons until an edit occurs

 When the user edits the page:

o The FieldStateControllers monitor edits and update the appearance of other controls, such as enabling them,
making them visible, or changing their style.

o The CalculationController calculates and updates values as the user changes numbers in textboxes.

o The Interactive Hints system showing hints as the user puts focus in a data entry field

o The Enhanced ToolTips replaces the browser’s tooltip with an HTML-driven popup.

o The TextCounter tells the user how close they are to the maximum size of a textbox.

o The ChangeMonitor enables buttons after an edit occurs.

o The ContextMenu lets you offer a right click menu with your own commands

 When submitting a page:

o Prompting the user to confirm before submitting

o Direct the ENTER key to click a button

o Disable the submit buttons as the page is submitted

Click on any of these topics to jump to them:

 FieldStateControllers Overview

 CalculationController Overview

 TextCounter Overview

 ContextMenu Overview

 Interactive Hints Overview

 Enhanced ToolTips Overview

 Enhanced Buttons Overview

 ChangeMonitor Overview

 Direct Keystrokes to Click Buttons Overview

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 15 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

FieldStateControllers Overview
Use demos here: http://www.peterblum.com/DES/DemoFSC.aspx.

The four FieldStateController controls make changes to the HTML elements on your page. They can change almost any
element on your page: visibility, enabled state, readonly state, the value, and more.

There are two types of FieldStateControllers: those that apply a single field state and those that apply one of two field states,
based on a Condition.

The FSCOnCommand and MultiFSCOnCommand are invoked by a click on a “command” such as a button and apply a
single field state. Any HTML tag that supports the “onclick” event can be used to fire it. Examples:

 You have a CheckBoxList and use a button titled “Select All” to mark all checkboxes.

 In a tabbed interface, an image that represents a “tab” can show or hide a panel containing the tab’s “page”

The FieldStateController and MultiFieldStateController support two field states based on a Condition. The Condition serves
two purposes:

 It monitors the controls assigned to the ControlIDToEvaluate and SecondControlIDToEvaluate properties of the
Condition. When they are changed or clicked (for non-data entry fields), it invokes the FieldStateController.

 It selects which of the two field states to apply, based on whether the Condition evaluates as “success” or “failed”.

They can use the extensive list of Conditions from DES’s Validators. For example, you set it up to use the
CheckStateCondition to monitor a checkbox and a RequiredTextCondition to monitor a textbox.

Once the FieldStateControllers have done their task, they can optionally run the Validators on the field whose state was
changed or run an entire validation group.

See “FieldStateController and MultiFieldStateController” and “FSCOnCommand and MultiFSCOnCommand”.

CalculationController Overview
Use demos here: http://www.peterblum.com/DES/DemoCalc.aspx.

The CalculationController lets you describe calculations that involve numbers in textboxes, constants and other logic. Using
javascript, it interactively calculates and updates its result as the user edits the page. The values from these calculations can
be used in the following ways:

 Displayed on the page, whether in a Label or a textbox.

 Validators that compare numbers can evaluate the value simply by setting their ControlIDToEvaluate property to this
control’s ID. Supported validators include: CompareToValueValidator, CompareTwoFieldsValidator, RangeValidator,
and DifferenceValidator. In addition, the RequiredTextValidator can determine if the calculation had an error.

 Like Validators, their Conditions can evaluate the value. For example, the Enabler property on various controls use
Conditions. Now those Conditions can enable their control based on the result of a calculation.

See “CalculationController”.

TextCounter Overview
Use demos here: http://www.peterblum.com/DES/DemoTextCounter.aspx.

The TextCounter control displays the number of characters or words within a textbox. It assists users when there are limits to
the size of text they can enter. It compliments, but does not replace the TextLengthValidator/WordCountValidator, because it
does not impose a limit. It merely communicates the count and if a limit is exceeded.

The user interface of the TextCounter can be like an interactive label control. It also can present itself in the Hint feature of
DES TextBoxes.

See “TextCounter Control”

http://www.peterblum.com/DES/DemoFSC.aspx�
http://www.peterblum.com/DES/DemoCalc.aspx�
http://www.peterblum.com/DES/DemoTextCounter.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 16 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ContextMenu Overview
Use demos here: http://www.peterblum.com/DES/DemoContextMenu.aspx.

This is a client side menu that is the basis for the context and help menus in the Peter’s Date and Time controls. It is designed
to look like a browser’s context menu with gaps on both sides, a column with the command name, a column with keystroke
for that command, and a frame around it. When the mouse passes over rows, the row is highlighted. When the user clicks on
a row, your client side script is run. It can appear open full time or be hooked up to one or more objects on the page to popup
on your choice of left or right mouse clicks.

See “Context Menu Control”.

Interactive Hints Overview
Use demos here: http://www.peterblum.com/DES/DemoHint.aspx.

As users work with textboxes, there are fields that require specific entries. Perhaps they require a pattern (like a date is
day/month/year) or they have limits (“Keep values between 1 and 5”). Web pages often communicate this information by
adding a label on the page, near the field. The label is always present, taking up valuable screen real estate.

The Interactive Hint allows a “PopupView” or label to show a message for the field currently with focus. When using labels,
as the user tabs around, the text changes or completely disappears. This allows for much better screen usage.

This feature also puts the hint in the browser’s status bar and the control’s tooltip. It optionally can include a validation error
in the hint. This gives the user the error as they tab into the field.

See “Interactive Hints”.

Enhanced ToolTips Overview
Use demos here: http://www.peterblum.com/DES/DemoToolTips.aspx.

The browser provides the ToolTip to describe almost any field as the mouse passes over it. That tooltip is very limited. For
most browsers, it cannot be multiline. It has one style (yellow). It cannot support HTML.

Using the same PopupView feature found in Interactive Hints and the DES Validator’s PopupErrorFormatter, DES gives you
a better tooltip. You control its appearance and supply it with HTML to convey the information better.

See “Enhanced ToolTips”.

Enhanced Buttons Overview
DES provides replacements for the native Button, LinkButton and ImageButton controls. While it needs to do this to invoke
its validation as the page is submitted, there are many ways to enhance buttons using javascript.

The DES buttons provide these enhancements:

http://www.peterblum.com/DES/DemoContextMenu.aspx�
http://www.peterblum.com/DES/DemoHint.aspx�
http://www.peterblum.com/DES/DemoToolTips.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 17 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 Use the ConfirmMessage property to display a confirmation message. If the user answers No to the prompt, it will
prevent the postback. Combined with the ChangeMonitor and the ChangeMonitorUsesConfirm property, you can have
the message shown only after an edit occurred.

 Use the ChangeMonitorEnables property to determine when the button is enabled as the ChangeMonitor determines
the page has been edited. When setup, the button is disabled as the page is loaded.

 Use the DisableOnSubmit property to disable the button after the user clicks, to limit the chance of a double
submission.

 Use the MayMoveOnClick property when validation is causing the user to click the button twice before it will submit.
The button is actually moving after the first click because validation is removing its error messages causing the page to
reposition its contents. This property does not require any license.

 Built in support for “Interactive Hints” and “Enhanced ToolTips”.

 When using the DES Validation Framework, validation groups support special tokens to match to all groups (“*”) and
assign group names based on their naming container (“+”). With the SkipPostBackEventsWhenInvalid property, they
can skip calling your Click and Command event handler methods if validation errors are detected.

 ImageButtons will actually dim (using style sheet opacity) when disabled by the ChangeMonitor, DisableOnSubmit
property, or the FieldStateController.

 LinkButtons normally show the contents of their href= attribute, which is javascript code, in the browser’s status bar.
Unless prevented by the browser, DES’s LinkButtons will hide the script from the status bar. If you have a tooltip
assigned, its text is used as a replacement.

The DES buttons are direct subclasses of the native buttons, making it very easy to switch to them.

See “Enhanced Buttons”.

ChangeMonitor Overview
Use demos here: http://www.peterblum.com/DES/DemoChangeMonitor.aspx.

The ChangeMonitor watches for edits in the form and changes the appearance of buttons and other fields upon the first
detected edit.

The classic case is to have a disabled OK button that gets enabled as you start typing. Another case is to show a message like
“This form has changed” in a label. Both of these cases are handled.

DES’s enhanced buttons are already capable of showing a confirmation message. With the ChangeMonitor in use, that
message can be shown based on whether or not the user has edited the form.

See “ChangeMonitor”.

Direct Keystrokes to Click Buttons Overview
DES’s TextBoxes and the MultiSegmentDataEntry control offer the EnterSubmitsControlID property, which lets you direct
the ENTER key to click a specific button or control. It’s useful when you have several Submit buttons on the page, each with
their own task.

Additional, the PeterBlum.DES.Globals.Page.RegisterKeyClicksControl() lets you attach this capability
to any control. This method has several advantages:

 It allows you to define the keystroke that clicks the button. For example, ESC can hit a “Cancel” button.

 Instead of setting it up for individual controls, you can set it up for a group of controls by attaching this to a container
control, like a Panel or Table. The browsers are designed to let the onkeypress event, used here, to “bubble up” until
consumed (which is what the container will do).

See “Direct Keystrokes to Click Buttons”.

http://www.peterblum.com/DES/DemoChangeMonitor.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 18 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

FieldStateController and MultiFieldStateController Controls
The FieldStateController and MultiFieldStateController controls provide an interactive client-side interface by monitoring
user actions on fields and changing the attributes and styles of other controls on the page. For example, when the user clicks a
checkbox, show a previously hidden <div>. The FieldStateControllers often eliminate the effort to build the browser-
independent JavaScript required to monitor events, look at field data, and change attributes and styles.

These controls do most of their work on the client-side. If the browser does not support the client-side scripting needed to run
a FieldStateController, it is disabled. That will leave your controls with the state that you define in their properties on the
server side.

The FieldStateController adds no HTML to your page as it does it work through JavaScript. You can add them anywhere to
your web form.

Click on any of these topics to jump to them:

 Features

 Using the FieldStateControllers

 The Condition

 Controls That Run The FieldStateController

 Controls To Change

 Attribute Values To Change

 Extending the Attributes with Your Own Code

 Updating Validators

 Changing Visibility on a Complex Control

 Toggling States

 Running FieldStateControllers On Demand

 Controls That Have Child Controls

 Example: FieldStateController

 Example: MultiFieldStateController

 Adding the FieldStateController Control

 Adding the MultiFieldStateController Control

 Properties of FieldStateController And MultiFieldStateController

 Running FieldStateControllers On Demand

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 19 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
The FieldStateController and MultiStateController controls make changes to the HTML elements on your page. They can
change almost any element on your page:

 Show or hide

 Enable or disable form controls (textboxes, lists, buttons, etc)

 Change the ReadOnly state of a textbox

 Change the style sheet class name, which can deliver an entirely different appearance through style sheets

 Change the textual value of a textbox

 Change the value of the selected element in a listbox or dropdownlist

 Change the “innerHTML” of a Label, , or any other HTML tag that supports “innerHTML”

 Change the URL associated with hyperlinks, images and other HTML tags that have an href= or src= attribute.

 Change the mark in a checkbox or radiobutton

 Mark or unmark all checkboxes in a CheckBoxList

 Change the value of any document object model attribute that has a datatype of string, boolean or integer

 Change the value of any document object model style

 Run your own JavaScript to handle special situations

Use demos here: http://www.peterblum.com/DES/DemoFSC.aspx.

You can see how powerful these controls are. You only need to set properties on the controls and you have enhanced your
user interface.

The FieldStateController and MultiFieldStateController support two field states based on a Condition. The Condition serves
two purposes:

 It monitors the controls assigned to the ControlIDToEvaluate and SecondControlIDToEvaluate properties of the
Condition. When they are changed or clicked (for non-data entry fields), it invokes the FieldStateController.

 It selects which of the two field states to apply, based on whether the Condition evaluates as “success” or “failed”.

They can use the extensive list of Conditions from DES’s Validators. For example, you set it up to use the
CheckStateCondition to monitor a checkbox and a RequiredTextCondition to monitor a textbox.

The FieldStateController and MultiFieldStateController initialize the look of the page by running the Condition and applying
the appropriate field state. This way, the page has the correct look and you don’t have to write any code on the server side to
establish the initial appearance.

Once the FieldStateControllers have done their task, they can optionally run the Validators on the field whose state was
changed or run an entire validation group.

http://www.peterblum.com/DES/DemoFSC.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 20 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the FieldStateControllers
There are four elements that always must be set up on a FieldStateController:

 A Condition object determines what control to monitor and selects between two sets of state settings.

 The controls that run the FieldStateController when clicked or changed

 The control or controls whose attributes that you want to change

 The attribute values that will change

Click on any of these topics to jump to them:

 The Condition

 Controls That Run The FieldStateController

 Controls To Change

 Attribute Values To Change

 Extending the Attributes with Your Own Code

 Client-Side Function: The Run Function

 Server Side Event Handler

 Updating Validators

 Changing Visibility on a Complex Control

 Toggling States

 Running FieldStateControllers On Demand

 Controls That Have Child Controls

 GetChild Method

 Installing the GetChild Method

The Condition
A Condition object evaluates something on the page and determines if it indicates “success”, “failure”, or “cannot be
evaluated”. See “About Conditions” in the Validation User’s Guide for more details. Conditions include references to the
controls whose data that the user will change, such as textboxes, lists, and checkboxes. The FieldStateController changes one
or more attributes of other controls based on whether the Condition indicates “success” or “failure”.

The Condition object is assigned to the Condition property. It can be assigned in ASP.NET text or programmatically.

FieldStateControllers use the same Condition objects as Validators. This can be any Condition class including the
MultiCondition used to build Boolean expressions. You can use the CustomCondition to create your own rules as well. If you
do, you must create client-side code for your Condition as the FieldStateController does most of its work on the client-side.

Note: FieldStateControllers are easier to set up when you have a license for the Peter’s Professional Validation module.
Otherwise, you are limited to creating your own Condition code using the CustomController class and using any of the Non-
Data Entry Conditions. Both are described in the Validation User’s Guide but do not require a license for any Validators
module.

<des:FieldStateController id="FSC1" runat="server" properties>
 <ConditionContainer>
 <des:ConditionClass properties>
 </ConditionContainer>
</des:FieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 21 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Controls That Run The FieldStateController
Usually, the Condition dictates which field runs the FieldStateController when the user clicks or edits the control specified by
the ControlIDToEvaluate or SecondControlIDToEvaluate properties. If you want to let the user click on a non-data entry
field, like a label, button, or image, to run the FieldStateController, add the desired control to the
ExtraControlsToRunThisAction property. When ExtraControlsToRunThisAction is used, consider setting the
EvaluateOnClickOrChange property to false on each Condition.

By default, the FieldStateController evaluates after focus leaves the textbox, list, or dropdownlist. Sometimes you want it to
evaluate as the user types. For example, a FieldStateController that displays another field so long as a textbox has text might
want to display it as soon as the first letter is entered into the textbox. Set the UpdateWhileEditing property to true for this
behavior.

The FieldStateControllers run as the page is first loaded into the browser. This establishes an initial appearance based on the
Condition at the time. You do not have to establish the state yourself. For example, if a <div> should be invisible initially,
the FieldStateController will handle it for you. You can override this behavior with the RunOnPageLoad property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 22 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Controls To Change
You must assign the ID or an object reference to the control(s) that you want to change. The FieldStateController control
requires one control to change. Use ControlIDToChange when you have an ID or ControlToChange when you have an
object reference.

The MultiFieldStateController changes as many controls as you want. Add
PeterBlum.DES.FSAControlConnection objects to the ControlConnections property. The
PeterBlum.DES.FSAControlConnection class can be assigned an ID to its ControlID property and an object
reference to its ControlInstance property.

Note: All controls must have an ID and runat=server property.

<des:FieldStateController id="FSC1" runat="server" ControlIDToChange="ID"
 Other properties >
 <ConditionContainer>
 <des:ConditionClass properties >
 </ConditionContainer>
</des:FieldStateController>

<des:MultiFieldStateController id="MFSC1" runat="server" properties>
 <ControlConnections>
 <des:FSAControlConnection ControlID="ID1" />
 <des:FSAControlConnection ControlID="ID2" />
 </ControlConnections>

 <ConditionContainer>
 <des:ConditionClass properties>
 </ConditionContainer>
</des:MultiFieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 23 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Attribute Values To Change
You can change any of these attributes:

 Visibility – changes the style:visibility and style:display attributes. For a special situation, see “Changing Visibility on a
Complex Control”.

 Enabled – changes the disabled attribute on the controls that support it (which varies by browser)

 ReadOnly – changes the readOnly attribute on textboxes

 CssClass – changes the style sheet class name

 FieldValue – changes the value attribute of <input>, <textarea>, and <select> tags

 InnerHTML – changes the innerHTML attribute on any control. InnerHTML is found in tags that permit contents
between their begin and end tags, like this: <tag>innerHTML</tag>. A Label, Panel, and TableCell are web
controls that generate tags that support InnerHTML (, <div>, and <td> respectively.)

 URL – changes the href or src attribute to a new URL on , <input type=image>, <frame>, <iframe>,
and <a> tags.

 Checked – changes the checked attribute on a checkbox or radiobutton

 If you know the name and legal values of an attribute or style, there is an all-purpose property, Other, which will modify
the attribute or style with the value as the Condition changes.

You define them in the ConditionTrue and ConditionFalse properties. When the Condition evaluates as “success”, it
applies the ConditionTrue attributes; when it evaluates as “failed”, it applies the ConditionFalse attributes. A change is
applied only when the attribute differs between ConditionTrue and ConditionFalse. For example, ConditionTrue.Visible
must differ from ConditionFalse.Visible for a visibility change to occur. See “Properties of ConditionTrue and
ConditionFalse”.

<des:FieldStateController id="FSC1" runat="server" ControlIDToChange="ID"
 ConditionFalse-AttributeName="value" Other properties >
 <ConditionContainer>
 <des:ConditionClass properties >
 </ConditionContainer>
</des:FieldStateController>

Example 1: Hiding a control when a checkbox is unchecked

<des:FieldStateController id="FSC1" runat="server" ControlIDToChange="TextBox1"
 ConditionFalse-Visible="false" >
 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>
</des:FieldStateController>

Example 2: Disabling 2 controls when a checkbox is unchecked

<des:MultiFieldStateController id="MFSC1" runat="server"
 ConditionFalse-Enabled="false" >
 <ControlConnections>
 <des:FSAControlConnection ControlID="TextBox1" />
 <des:FSAControlConnection ControlID="TextBox2" />
 </ControlConnections>

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>
</des:MultiFieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 24 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Extending the Attributes with Your Own Code
Sometimes you need to write your own code to change attributes. For example, you have a complex control that needs to hide
several related controls when it is hidden. You can write client- and server-side code to handle this.

Here are some of the cases to consider:

 A third party custom control uses its own JavaScript to adjust its properties.

 The control is created by JavaScript on the client side and has no server-side ID.

 A calculation must be performed before the setting can be determined.

You assign your function to the RunFunctionName property.

Client-Side Function: The Run Function

Create a client-side function in JavaScript and assign its name to the RunFunctionName property.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Your function must take these three parameters in the order shown:

 An object reflecting this FieldStateController's properties on the client-side. It allows you to get properties like CssClass,
Enabled and Visible for use in your function. They are client-side properties on the object with these names:

o CT_Vis (Boolean) – ConditionTrue.Visible

o CF_Vis (Boolean) – ConditionFalse.Visible

o CT_Enab (Boolean) – ConditionTrue.Enabled

o CF_Enab (Boolean) – ConditionFalse.Enabled

o CT_RO (Boolean) – ConditionTrue.ReadOnly

o CF_RO (Boolean) – ConditionFalse.ReadOnly

o CT_Css (string) – ConditionTrue.CssClass

o CF_Css (string) – ConditionFalse.CssClass

o CT_Html (string) – ConditionTrue.InnerHTML

o CF_Html (string) – ConditionFalse.InnerHTML

o CT_URL (string) – ConditionTrue.URL

o CF_URL (string) – ConditionFalse.URL

o CT_Chk (Boolean) – ConditionTrue.Checked

o CF_Chk (Boolean) – ConditionFalse.Checked

o CT_Val (string) – ConditionTrue.FieldValue

o CF_Val (string) – ConditionFalse.FieldValue

o InvPS (Boolean) – InvisiblePreservesSpace

 ControlToChange element reference – The element that is being operated upon. It is an object for the element. If you
need the object’s ID, this object has a property called id.

 ConditionValue – a Boolean. When true, the condition indicates success.

It does not return a result.

If you need to know how to add JavaScript to your page, see “Adding Your JavaScript to the Page”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 25 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example

This function will call a fictitious JavaScript function, TPF_SetVisibility(), which changes the visibility of the
control ID. It makes the control visible when the condition indicates success.

function MyFSCFunction(DESObj, ControlToChange, ConditionValue)
{
 TPF_SetVisibility(ControlToChange.id, ConditionValue);
}

Server Side Event Handler

The FieldStateController performs some of its state changes as the page is first created on the server side. If you write a
client-side function for the RunFunctionName property to use, use the StateChange event handler property to attach an
equivalent server side method. The StateChange property expects your method to match the
PeterBlum.DES.ChangeStateEventHandler delegate.

Note: The StateChange property only handles one event handler and must be assigned programmatically (it does not appear
in the Properties Editor.)

The ChangeStateEventHandler is defined here:

[C#]

public delegate void ChangeStateEventHandler(
 BaseFieldStateAction sender, ChangeStateEventArgs args);

[VB]

Public Delegate Sub ChangeStateEventHandler(_
 ByVal sender As BaseFieldStateAction, _
 ByVal args As ChangeStateEventArgs)

Parameters

sender

An internal representation of the FieldStateControllers. It contains the same properties but is of the class
PeterBlum.DES.BaseFieldStateAction. If you used the MultiFieldStateController, this represents a single control to
change and the event handler will be called once for each control to change.

args

The PeterBlum.DES.ChangeStateEventArgs class provides additional inputs that are useful to your event handler.
The ControlToChange property is reference to the control that is being changed. Success is a Boolean where it
indicates success of the condition when true and failure when false.

[C#]

public class ChangeStateEventArgs : System.EventArgs
{
 public Control ControlToChange { get; }
 public bool Success { get; }
}

[VB]

Public Class ChangeStateEventArgs Inherits System.EventArgs
 Public ReadOnly Property ControlToChange As Control
 Public ReadOnly Property Success As Boolean
End Class

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 26 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Updating Validators
Sometimes a field hidden or disabled by the FieldStateController has an associated Validator whose error message is
showing. That message is no longer appropriate. To remove it, first set up the Enabler property on the Validator to detect
that the control is visible or enabled. Use the VisibleCondition or EnabledCondition.

Then set the ValidateChangedControls property to true.

If the FieldStateController affects controls that are used in the Enabler properties of other Validators, let it run all Validators
in the validation group associated with those Validators. Set the UseValidationGroup property to true and the group name
of the Validator in the ValidatorGroup property.

Use the RevalidateOnly property to evaluate only validators that have previously been evaluated on the page. This prevents
validator errors from appearing further down the page, where the user has not edited.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 27 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Changing Visibility on a Complex Control
Some web controls include a number of HTML tags. The control’s ID property may refer to just one of the HTML tags it
generates. If you use the FieldStateController to show and hide that control by its ID, you will only show or hide the one tag
associated with the control ID.

Solution

Look at the HTML output of any web control to see which HTML tag is assigned the ID (specifically the ClientID property
value.) If that tag encloses all HTML for that control, you can use the web control’s ID with the
FieldStateController.ControlIDToEvaluate property.

If the tag does not enclose the control, add a or <div> tag around the web control. Set the runat="server"
property and assign an ID value. Set the FieldStateController.ControlIDToEvaluate property to the ID of that or
<div> tag.

Example: The DateTextBox Control

ALERT: DES’s own controls – including the DateTextBox - do not need the this technique as they automatically account for
the issue here. This is merely an example.

The textboxes in Peter’s Date And Time use multiple HTML tags. For example, the DateTextBox has an tag to the
right of the textbox which is used to toggle a popup calendar. The textbox in these controls is associated with the control’s
ID.

<input type='text' id='control_clientid' >

If you assign the ControlIDToChange property to the DateTextBox’s ID, it will only show and hide the textbox, leaving the
image visible.

Here’s the solution.

 <des:DateTextBox runat="server" id="DateTextBox1" />

<des:FieldStateController runat="server" id="FSC1"
 ControlIDtoChange="DateTextBox1Container" ConditionTrue-Visible="true">
 <Condition>
 [you determine this]
 </Condition>
</des:FieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 28 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Toggling States
You can easily set up a checkbox to show and hide other fields using the FieldStateController because the checkbox has a
clear two-state value. As you work with FieldStateControllers you will learn to use Conditions to build almost any way to
toggle between two states such as when a particular field is invisible, toggle it to visible.

Suppose that you want to use a Button to show or hide another field each time it’s clicked. Here’s how you would set up a
FieldStateController to handle this case.

 Add the Button control to the ExtraControlsToRunThisAction collection.

 Assign the Condition property to the VisibilityCondition. Set its IsVisible property to true. Set its
ControlIDToEvaluate to the field whose visibility will change.

 Assign ControlIDToChange to the field whose visibility will change.

 Assign ConditionTrue.Visible to false and ConditionFalse.Visible to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 29 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Running FieldStateControllers On Demand
When you add your own JavaScript on a page, you may change the state of the page. FieldStateControllers will not notice
your changes and the page may no longer be consistent with how you want it to work. DES provides the JavaScript function
DES_RunAllFSC() that runs all FieldStateControllers on the page whose RunOnPageLoad property is true. Call the
function from within your JavaScript code.

You can set up your JavaScript in two ways:

1. Embed the function call DES_RunAllFSC() into your code.

<script type='text/javascript' language='javascript'>
function ChangeMyFields()
{
 // change some fields here
 DES_RunAllFSC(); // let DES catch up
}
</script>

For details on adding scripts to your page, see “Adding Your JavaScript to the Page”.

2. Let PeterBlum.DES.Globals.Page.GetRunAllFSCScript() return a short script that calls this
function.

Button1.Attributes["onclick"] =
 PeterBlum.DES.Globals.Page.GetRunAllFSCScript()

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 30 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Controls That Have Child Controls
The FieldStateControllers usually interact with a single HTML tag, such as a <input>, <table> or . Some web
controls, such as the RadioButtonList and CheckBoxList, really do most of their work with child tags. For example, both the
RadioButtonList and CheckBoxList have unique <input type=radio|checkbox> tags for the buttons. When you use
the FieldStateController to change their state, you often want to modify the state of these controls. The FieldStateController
has an expandable mechanism to handle these kinds of web controls.

It automatically supports System.Web.UI.WebControls.RadioButtonList and
System.Web.UI.WebControls.CheckBoxList. You can provide a JavaScript function to handle the child controls
of other web controls.

This feature only updates these state settings on child controls:

 Visibility

 Enabled

 ReadOnly

 CssClass

 Checked (not recommended for RadioButtonLists)

All other state settings are only applied to the HTML tag associated with the ID specified in ControlIDToChange or
ControlConnections.

GetChild Method

The GetChild method is a client-side function that is associated with a specific web control class and returns each child
control for the FieldStateController to use. You will define this function when you are using a custom control whose child
elements should change their visibility, enabled, read only, classname, or checked state settings.

The GetChild method is written in JavaScript and added into your web page. See “Adding Your JavaScript to the Page”. It
has the following format:

function FunctionName(pID, pIndex, pMode)
{
 return [a field based on Index and Mode or null];
}

Your function will be called with incrementing values of Index until you return null.

Parameters

pID (string)

The ClientID assigned by the user to the control in the ControlIDToChange or ControlConnections property.
Your function will use this ID to create the ID of a child control. For example, the CheckBoxList uses pFieldID +
"_" + Index. See “Embedding the ClientID into your Script”.

pIndex (integer)

A value starting at 0 that selects a control, either the main control or one of its children. The method should locate a
specific child control matching that Index and return it. If the Index does not identify a child control, return null.
The FieldStateController starts with Index = 0 and increments it until null is returned. So do not return null
unless the Index is beyond the range of available child controls.

pMode (integer)

 Your function will also be used to attach onclick and onchange event handlers to validators that may use your
custom web control. This parameter determines if the FieldStateController or a validator calls your function. The
values are:

0 – Return all controls whose states should be modified by the FieldStateController.

1 – Return data entry oriented child controls. These will be set up with onclick and onchange event handlers.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 31 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Return value

A reference to a control or null. Your method should create a FieldID based on the three parameters and pass it to
DES_GetById(). That function returns the matching control reference or null.

Example

This is the function used by both the CheckBoxList and RadioButtonList web controls. Child controls have the format
FieldID_# where # is 0 and up.

function DES_GCCheckRadioList(pID, pIndex, pMode)
{
 var vID = "";
 if (pMode == 0) // FSC needs the container (index 0)
 // and the child controls (index 1 and up)
 vID = pIndex == 0 ? pID: pID + "_" + (pIndex - 1);
 else
 vID = FieldID + "_" + pIndex;
 return DES_GetById(vID);
}

Installing the GetChild Method

You must map your GetChild method to the web control class in the custom.DES.config file. When DES sees a web
control that matches an entry in the custom.DES.config file, it installs the GetChild method.

1. Locate the <GetChildMethods> section of the custom.DES.config file.

2. Add a new <GetChildMethod> element. It has this format:

<GetChildMethod type="[full classname, qualified assembly name]"
 method="[methodname]"/>

As an example, here are the <GetChildMethod> definitions for CheckBoxList and RadioButtonList:

<GetChildMethod type="System.Web.UI.WebControls.CheckBoxList, System.Web,
Version= 2.0.50727.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
method="DES_GCCheckRadioList" />

<GetChildMethod type="System.Web.UI.WebControls.RadioButtonList, System.Web,
Version= 2.0.50727.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
method="DES_GCCheckRadioList" />

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 32 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: FieldStateController
Note: For more examples, see the Tutorials document and http://www.peterblum.com/DES/DemoFSC.aspx.

Suppose you have a checkbox that shows a Panel when the user marks it and hides the Panel when unmarked. The Panel
contains numerous textboxes representing an address.

Condition: The CheckStateCondition, which is designed to monitor the state of a checkbox and indicate success when the
mark matches the value you supply in the Checked property. Assign it to the Condition property.

Control That Runs This FieldStateController: The checkbox, assigned to the
CheckStateCondition.ControlIDToEvaluate property.

Control To Change: Assign the Panel control’s ID to ControlIDToChange.

Attributes to Change: When the Condition indicates “success”, ConditionTrue.Visible is true. When the Condition
indicates “failed”, ConditionFalse.Visible is false.

<p><asp:CheckBox id="CheckBox1" runat="server"
Text="Alternate shipping address"></asp:CheckBox></p>

<p><asp:Panel id="Panel1" runat="server">TextBoxes for an Address</asp:Panel></p>

<des:FieldStateController id="FieldStateController1" runat="server"
ConditionFalse-Visible="False" ControlIDToChange="Panel1">

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>
</des:FieldStateController>

http://www.peterblum.com/DES/DemoFSC.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 33 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: MultiFieldStateController
This is a modification of the previous example. Instead of having a Panel, you have TextBoxes whose Enabled state will be
changed as the checkbox is marked.

The differences from the previous example are:

 Use of the MultiFieldStateController

 Adding TextBoxes to the ControlConnections property

 Using the Enabled attribute instead of the Visible attribute on ConditionTrue and ConditionFalse.

 Textboxes replace the Panel

<p><asp:CheckBox id="CheckBox1" runat="server"
Text="Alternate shipping address"></asp:CheckBox></p>

<p><asp:TextBox id="AddressLine1" runat="server"></asp:TextBox></p>
<p><asp:TextBox id="AddressLine2" runat="server"></asp:TextBox></p>
<p><asp:TextBox id="AddressLine3" runat="server"></asp:TextBox></p>

<des:MultiFieldStateController id="MultiFieldStateController1" runat="server"
ConditionFalse-Enabled="False">

 <ControlConnections>
 <des:FSAControlConnection ControlID="AddressLine1"></des:FSAControlConnection>
 <des:FSAControlConnection ControlID="AddressLine2"></des:FSAControlConnection>
 <des:FSAControlConnection ControlID="AddressLine3"></des:FSAControlConnection>
 </ControlConnections>

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>
</des:MultiFieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 34 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the FieldStateController Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Set up all the fields involved: the data entry controls that will toggle the state and the controls whose state will change.
Be sure that the controls whose state will change include an ID and runat="server" property.

Test your page without adding any FieldStateControllers. This is how your page will operate when the browser does not
have JavaScript available. Your users should be able to work with it in this state. Your server-side code should have its
logic set up correctly to know when controls should be avoided because they are supposed to be invisible or disabled.

3. Add the FieldStateController control to the page. Its location does not matter as it contributes no HTML to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the FieldStateController control from the Toolbox onto your web form. It will look like this:

Text Entry Users

Add the control (inside the <form> area):

<des:FieldStateController id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the FieldStateController control to its Controls collection. Like all
ASP.NET controls, the FieldStateController control can be added to any control that supports child controls, like
Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

 Create an instance of the FieldStateController control class. The constructor takes no parameters.

 Assign the ID property.

 Add the FieldStateController control to the Controls collection.

In this example, the FieldStateController control is created with an ID of “FieldStateController1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.FieldStateController vFSC =
 new PeterBlum.DES.FieldStateController();
vFSC.ID = "FieldStateController1";
PlaceHolder1.Controls.Add(vFSC);

[VB]

Dim vFSC As PeterBlum.DES.FieldStateController = _
 New PeterBlum.DES.FieldStateController()
vFSC.ID = "FieldStateController1"
PlaceHolder1.Controls.Add(vFSC)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 35 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

4. Determine which Condition class will provide the controls to monitor and selects whether to use the field states of
ConditionTrue or ConditionFalse. You can use any Condition class supplied with DES or create your own using the
CustomCondition class. See “About Conditions” in the Validation User’s Guide to choose a class.

Note: You can use the Non-Data Entry Conditions, which monitor non-data oriented attributes of visibility, enabled,
readonly and more. When you do, you will need to establish a control to monitor in the ExtraControlsToRunThisAction
property.

Note: If you are changing the visibility on a web control, see “Changing Visibility on a Complex Control”.

5. Set the Condition object on the Condition property. Set its properties.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor for the Condition property provides a window where you can select Condition objects and
establish their properties.

 Select the Condition from the List and click OK.

 Establish the properties in the Properties grid.

 Click OK.

ASP.NET Text Formatting for the Conditions Property

You add the Condition as child of the <ConditionContainer> tag (not <Condition>).

The following example represents a CheckStateCondition.

<des:FieldStateController id="FieldStateController1" runat="server">

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>

</des:FieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 36 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Notice that the Condition property name never appears in the attributes of the <des:FieldStateController>
tag. (It will be added when using the Properties Editor but it’s completely meaningless.) Instead, the
<ConditionContainer> tag is a child of the FieldStateController control tag. That tag has no attributes. The child
to <ConditionContainer> defines the class and all properties of the Condition:

<des:classname[all properties] />

 des:classname – Use any Condition class for the classname. If you create your own classes, you must declare the
namespace using the <% @REGISTER %> tag at the top of the page.

 [all properties] – Enter the properties into the tag the same way you do for any other control.

Programmatically Adding Conditions

Here are the steps to set the Condition.

 Create an instance of the desired Condition class. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each demands
an “owner” in the first parameter. That value must be the FieldStateController object.

 Assign property values.

 Assign the Condition object to the Condition property.

In this example, add the CheckStateCondition, which is checking the mark of CheckBox1, to FieldStateController1.

[C#]

PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.Checked = true;
FieldStateController1.Condition = vCond;

[VB]

Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.Checked = True
FieldStateController1.Condition = vCond

6. Usually, the Conditions dictate which field runs the FieldStateController when the user clicks or edits the control
specified by the ControlIDToEvaluate or SecondControlIDToEvaluate properties. If you want to let the user click on
a non-data entry field, like a label, button, or image, to run the FieldStateController, add the desired control to the
ExtraControlsToRunThisAction property. Also use ExtraControlsToRunThisAction when the Condition is a Non-
Data Entry Condition. When ExtraControlsToRunThisAction is used, consider setting the EvaluateOnClickOrChange
property to false on each condition.

7. Set the ID of control whose attributes will change with the ControlIDToChange property or a reference to the control in
the ControlToChange property.

8. Assign the attributes that will change, depending on the Condition, in the ConditionTrue and ConditionFalse
properties. ConditionTrue will be used when the Condition evaluates as “success”. ConditionFalse will be used when
the Condition evaluates as “failed”.

The ControlIDToChange will change its settings when the attribute differs between ConditionTrue and
ConditionFalse. For example, ConditionTrue.Visible must differ from ConditionFalse.Visible for a visibility change
to occur.

See “Properties of ConditionTrue and ConditionFalse”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 37 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET Text Formatting for the ConditionTrue and ConditionFalse Properties

The properties contained in ConditionTrue and ConditionFalse are added directly to the
<des:FieldStateController> tag. Use this format: <des:FieldStateController ConditionTrue-
propertyname="value" ConditionFalse-propertyname="value">. For example:

<des:FieldStateController id="FieldStateController1" runat="server"
 ConditionFalse-Visible="False">

9. Sometimes a field hidden or disabled by the FieldStateController has an associated Validator whose error message is
showing. That message is no longer appropriate. To remove it, first set up the Enabler property on the Validator to
detect that the control is visible or enabled. Use the VisibleCondition or EnabledCondition class. See the “Non-Data
Entry Conditions” in the Validation User’s Guide.

Then set the ValidateChangedControls property to true.

10. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 38 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the MultiFieldStateController Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Start by setting up all the fields involved: the data entry controls that will toggle the state and the controls whose state
will change. Be sure that the controls whose state will change include an ID and runat="server" property.

Test your page without adding any MultiFieldStateControllers. This is how your page will operate when the browser
does not have JavaScript available. Your users should be able to work with it in this state. Your server-side code should
have its logic set up correctly to know when fields should be avoided because they are supposed to be invisible or
disabled.

3. Add the MultiFieldStateController control to the page. Its location does not matter as it contributes no HTML to the
page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the MultiFieldStateController control from the Toolbox onto your web form. It will look like this:

Text Entry Users

Add the control (inside the <form> area):

<des:MultiFieldStateController id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the MultiFieldStateController control to its Controls collection. Like all
ASP.NET controls, the MultiFieldStateController control can be added to any control that supports child controls,
like Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

 Create an instance of the MultiFieldStateController control class. The constructor takes no parameters.

 Assign the ID property.

 Add the MultiFieldStateController control to the Controls collection.

In this example, the MultiFieldStateController control is created with an ID of “MultiFieldStateController1”. It is added
to PlaceHolder1.

[C#]

PeterBlum.DES.MultiFieldStateController vMFSC =
 new PeterBlum.DES.MultiFieldStateController();
vMFSC.ID = "MultiFieldStateController1";
PlaceHolder1.Controls.Add(vMFSC);

[VB]

Dim vMFSC As PeterBlum.DES.MultiFieldStateController = _
 New PeterBlum.DES.MultiFieldStateController()
vMFSC.ID = "MultiFieldStateController1"
PlaceHolder1.Controls.Add(vMFSC)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 39 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

4. Determine which Condition class will provide the controls to monitor and selects whether to use the field states of
ConditionTrue or ConditionFalse. You can use any Condition class supplied with DES or create your own using the
CustomCondition class. See “About Conditions” in the Validation User’s Guide to choose a class.

Note: You can use the Non-Data Entry Conditions, which monitor non-data oriented attributes of visibility, enabled,
readonly and more. When you do, you will need to establish a control to monitor in the ExtraControlsToRunThisAction
property.

Note: If you are changing the visibility on a web control, see “Changing Visibility on a Complex Control”.

5. Set the Condition object on the Condition property. Set its properties.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor for the Condition property provides a window where you can select Condition objects and
establish their properties.

 Select the Condition from the List and click OK.

 Establish the properties in the Properties grid.

 Click OK.

ASP.NET Text Formatting for the Conditions Property

You add the Condition as child of the <ConditionContainer> tag.

The following example represents a CheckStateCondition.

<des:MultiFieldStateController id="MultiFieldStateController1" runat="server">

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>

</des:MultiFieldStateController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 40 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Notice that the Condition property never appears in the attributes of the <des:MultiFieldStateController>
tag. (It will be added when using the Properties Editor but it’s completely meaningless.) Instead, the
<ConditionContainer> tag is a child of the FieldStateController control tag. That tag has no attributes. The child
to <ConditionContainer> defines the class and all properties of the Condition:

<des:classname[all properties] />

 des:classname – Use any Condition class for the classname. If you create your own classes, you must declare the
namespace using the <% @REGISTER %> tag at the top of the page.

 [all properties] – Enter the properties into the tag the same way you do for any other control.

Programmatically Adding Conditions

Here are the steps to set the Condition.

 Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each demands
an “owner” in the first parameter. That value must be the FieldStateController object.

 Assign property values.

 Assign the Condition object to the Condition property.

In this example, add the CheckStateCondition, which is checking the mark of CheckBox1, to FieldStateController1.

[C#]

PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.Checked = true;
FieldStateController1.Condition = vCond;

[VB]

Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.Checked = True
FieldStateController1.Condition = vCond

6. Usually, the Conditions dictate which field runs the FieldStateController when the user clicks or edits the control
specified by the ControlIDToEvaluate or SecondControlIDToEvaluate properties. If you want to let the user click on
a non-data entry field, like a label, button, or image, to run the FieldStateController, add the desired control to the
ExtraControlsToRunThisAction property. Also use ExtraControlsToRunThisAction when the Condition is a Non-
Data Entry Condition. When ExtraControlsToRunThisAction is used, consider setting the EvaluateOnClickOrChange
property to false on each condition.

7. Create a list of control whose attributes will change within the ControlConnections property. Add
PeterBlum.DES.FSAControlConnection objects. Assign the ID of the control to the ControlID property or a
reference to the control in the ControlInstance property. ControlInstance can only be assigned programmatically.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor for the ControlConnections property provides a window where add
PeterBlum.DES.FSAControlConnection objects and assign the ControlID property to the ID of the control.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 41 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET Text Formatting for the ControlConnections Property

ControlConnections is a type of collection. Therefore its ASP.NET text is nested as a series of
PeterBlum.DES.FSAControlConnection objects within the <ControlConnections> tag. Each
PeterBlum.DES.FSAControlConnection is a tag with <des:FSAControlConnection> followed by the
ControlID property.

The following example represents the same ControlConnections shown in the editor window above.

<des:MultiFieldStateController id="MultiFieldStateController1" runat="server">
 <ControlConnections>
 <des:FSAControlConnection ControlID="AddressLine1">
 </des:FSAControlConnection>
 <des:FSAControlConnection ControlID="AddressLine2">
 </des:FSAControlConnection>
 <des:FSAControlConnection ControlID="AddressLine3">
 </des:FSAControlConnection>
 </ControlConnections>

</des:MultiFieldStateController>

Programmatically Adding Conditions

Use the Add() method on the ControlConnections property. Pass the ID, reference to the control, or
PeterBlum.DES.FSAControlConnection object. In this example, “AddressLine1” is an ID to a control and
AddressLine2 is a reference to the control object.

[C#]

MultiFieldStateController1.ControlConnections.Add("AddressLine1");

MultiFieldStateController1.ControlConnections.Add(AddressLine2);

[VB]

MultiFieldStateController1.ControlConnections.Add("AddressLine1")

MultiFieldStateController1.ControlConnections.Add(AddressLine2)

8. Assign the field state attributes that will change, depending on the Condition, in the ConditionTrue and ConditionFalse
properties. ConditionTrue will be used when the Condition evaluates as “success”. ConditionFalse will be used when
the Condition evaluates as “failed”.

The controls in ControlConnections will change their settings when the attribute differs between ConditionTrue and
ConditionFalse. For example, ConditionTrue.Visible must differ from ConditionFalse.Visible for a visibility change
to occur.

See “Properties of ConditionTrue and ConditionFalse”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 42 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET Text Formatting for the ConditionTrue and ConditionFalse Properties

The properties contained in ConditionTrue and ConditionFalse are added directly to the
<des:MultiFieldStateController> tag. Use this format: <des:MultiFieldStateController
ConditionTrue-propertyname="value" ConditionFalse-propertyname="value">. For example:

<des:MultiFieldStateController id="MultiFieldStateController1" runat="server"
 ConditionFalse-Visible="False">

9. Sometimes a field hidden or disabled by the MultiFieldStateController has an associated Validator whose error message
is showing. That message is no longer appropriate. To remove it, first set up the Enabler property on the Validator to
detect that the control is visible or enabled. Use the VisibleCondition or EnabledCondition class. See the “Non-Data
Entry Conditions” in the Validation User’s Guide.

Then set the ValidateChangedControls property to true.

10. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 43 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties of FieldStateController And MultiFieldStateController
Click on any of these topics to jump to them:

 Invoke the Change Properties

 Controls To Change Properties

 Attributes To Change Properties

 Properties of ConditionTrue and ConditionFalse

 Update Validators Properties

 When to Use the Control Properties

 Behavior Properties

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 44 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Invoke the Change Properties
The Properties Editor shows these properties in the “Invokes The Change” category.

 Condition (PeterBlum.DES.BaseCondition) – Pick any Condition class and set its properties. Be sure to be thorough
with properties on the Condition that you select. It is easy to forget to assign the ControlIDToEvaluate or rules of the
condition. When ControlIDToEvaluate is forgotten, expect to get a runtime error.

You can see how to set this property in design mode, in ASP.NET declarative syntax, and programmatically in step 5 of
“Adding the FieldStateController Control”.

 ExtraControlsToRunThisAction (PeterBlum.DES.ControlConnectionCollection) – Identifies additional controls and
elements on the page that run this FieldStateController when clicked or changed.

The Condition already identifies controls through its ControlIDToEvaluate and SecondControlIDToEvaluate
properties so this is rarely needed. The most common usages are:

o If you want the user to click on a non-data field, like a label, image, or button, use this property.

o Conditions that reference radiobuttons such as the CheckStateCondition. The browser only runs a radiobutton’s
onclick event when the button is clicked. It doesn’t run when clicking another radiobutton unmarks the
radiobutton specified in ControlIDToEvaluate. Assign the other radiobuttons to this property.

o If your CustomCondition uses controls that are not specified by ControlIDToEvaluate and
SecondControlIDToEvaluate, add those controls to this property.

This property is a collection of PeterBlum.DES.ControlConnection objects. You can assign the control’s ID to
the ControlConnection.ControlID property or a reference to the control in the ControlConnection.ControlInstance
property. When using the ControlID property, the control must be in the same or an ancestor naming container. If it is in
another naming container, use ControlInstance.

Here are some considerations:

o Be sure that the control assigned to this collection has the runat="server" property.

o You may want to disable the Conditions from setting up other fields from running the FieldStateController by
setting the Condition.EvaluateOnClickOrChange property to false. For example, if your Condition
evaluates a checkbox with the CheckBoxCondition, by default, CheckBoxCondition will run the
FieldStateController whenever the checkbox is clicked.

ASP.NET Declarative Syntax for the ExtraControlsToRunThisAction Property

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET text is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:FieldStateController id="FieldStateController1" runat="server">

 <ExtraControlsToRunThisAction>
 <des:ControlConnection ControlID="TextBox1" />
 <des:ControlConnection ControlID="Label1" />
 </ExtraControlsToRunThisAction>

</des:FieldStateController>

Programmatically adding to the ExtraControlsToRunThisAction Property

Use the ExtraControlsToRunThisAction.Add() method to add an entry. This overloaded method takes one
parameter. Choose from the following:

 A reference to the control itself. This is the preferred form.

 A string giving the ID of the control. Do not use this when the control is not in the same naming container.

 An instance of the class PeterBlum.DES.ControlConnection.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 45 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

This example shows how to update an existing PeterBlum.DES.ControlConnection and add a new entry.
Suppose the ASP.NET code looks like the text above and the Label1 control is not in the same or ancestor naming
container. Also suppose the control referenced in the property TextBox2 control must be added.

[C#]

uses PeterBlum.DES;
...
ControlConnection vConnection = (ControlConnection)
 FieldStateController1.ExtraControlsToRunThisAction[1];
vConnection.ControlInstance = Label1;
// add TextBox2. It can be either a control reference or its ID
FieldStateController1.ExtraControlsToRunThisAction.Add(TextBox2);

[VB]

Imports PeterBlum.DES
...
Dim vConnection As ControlConnection = _
 CType(FieldStateController1.ExtraControlsToRunThisAction(1), ControlConnection)
vConnection.ControlInstance = Label1
' add TextBox2. It can be either a control reference or its ID
FieldStateController1.ExtraControlsToRunThisAction.Add(TextBox2)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 46 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Controls To Change Properties
The Properties Editor shows these properties in the “Control To Change” category.

 ControlIDToChange (string) – Only on FieldStateController. The ID to the control whose state will be changed. If this
ID is unassigned, the FieldStateController is disabled.

This ID must be in the same or an ancestor naming container. If it is in another naming container, use
ControlToChange. Be sure that the control whose ID is used here has the runat=server property.

Note: If you are changing the visibility on a web control, see “Changing Visibility on a Complex Control”.

 ControlToChange (System.Web.UI.Control) – Only on FieldStateController. A reference to the control whose state
will be changed. It is an alternative to ControlIDToChange that you must assign programmatically. It accepts controls
in any naming container.

When programmatically assigning properties to a FieldStateController, if you have access to Control To Change’s
object, it is better to assign it here than assign its ID to the ControlIDToChange property because DES operates faster
using ControlIDToChange.

 ControlConnections (PeterBlum.DES.ControlConnectionCollection) - Only on MultiFieldStateController. This
collection contains PeterBlum.DES.FSAControlConnection objects that defines a reference to a control, either
by its ID or an object reference. When setting up the MultiFieldStateController, you should add a
FSAControlConnection object for each control whose state will change. Set the FSAControlConnection.ControlID
property to the ID of the control if it’s in the same or ancestor naming container. Set the
FSAControllConnection.ControlInstance property programmatically to the control in any other naming container.

Be sure that each control whose ID is used has the runat=server property.

You can see how to set this property in design mode, in the webform and programmatically in step 7 of “Adding the
MultiFSCOnCommand Control”.

The ControlConnectionCollection class is subclassed from System.Collections.ArrayList and inherits all of its properties,
methods and events.

http://msdn2.microsoft.com/en-us/library/system.collections.arraylist(vs.71).aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 47 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Attributes To Change Properties
The Properties Editor shows these properties in the “Attributes to Change” category.

 ConditionTrue (PeterBlum.DES.StateSettings) – The values of attributes when the Condition evaluates as “success”.
See “Properties of ConditionTrue and ConditionFalse” below. Each attribute will be compared to the same attribute in
ConditionFalse. If the two values differ, the control’s state will be changed.

ASP.NET Text Formatting

The properties contained in ConditionTrue are added directly to the <des:FieldStateController> tag. Use this
format: <des:FieldStateController ConditionTrue-propertyname="value">. For example:

<des:FieldStateController id="FieldStateController1" runat=server
 ConditionTrue-Visible="False">

 ConditionFalse (PeterBlum.DES.StateSettings) – The values of attributes when the Condition evaluates as “failed”. See
“Properties of ConditionTrue and ConditionFalse”. Each attribute will be compared to the same attribute in
ConditionTrue. If the two values differ, the control’s state will be changed.

ASP.NET Text Formatting

The properties contained in ConditionFalse are added directly to the <des:FieldStateController> tag. Use
this format: <des:FieldStateController ConditionFalse-propertyname="value">. For example:

<des:FieldStateController id="FieldStateController1" runat=server
 ConditionFalse-Visible="False">

 InvisiblePreservesSpace (Boolean) – Determines if a control takes up space on the page when it is invisible. When the
ConditionTrue.Visible or ConditionFalse.Visible property causes the field to be hidden, there are two ways the field
can be hidden: Preserve the space of the element or remove the element entirely. This depends on the display style
attribute.

When true, space is preserved. (The style is set to visibility:hidden with no change to the display style.)

When false, the element is removed. (The style is visibility:hidden;display:none.) When the element becomes
visible once again, the display style is restored to its original value.

It defaults to true.

Properties of ConditionTrue and ConditionFalse

The PeterBlum.DES.StateSettings class is used by the ConditionTrue and ConditionFalse properties to define
most of the attributes that you can change on a control. When these values are set differently between ConditionTrue and
ConditionFalse, the field state is applied based on the Condition. Here are the properties of the StateSettings class:

 Visible (Boolean) – Sets the visibility. When true, it is visible. When false, it is hidden.
FieldStateController.InvisiblePreservesSpace determines if it also retains or loses the space it occupies when it is
hidden. It defaults to true.

This property changes style:visibility. If InvisiblePreservesSpaces is true, it also changes style:display.

Note: If you are changing the visibility on a web control, including Peter’s Date Package controls, see “Changing
Visibility on a Complex Control”.

 Enabled (Boolean) – Sets the enabled state on controls that support the HTML property disabled. When true, the
control is enabled (disabled=false). When false, the control is disabled.

Most browsers support the disabled attribute on data entry controls and buttons (<input>, <select> and
<textarea> tags). Internet Explorer supports it on most tags. When you disable a <div>, for example, all data entry
controls it contains appear disabled. Yet, textboxes may still be editable because they don’t actually have their own
disabled attribute set up. To provide cross browser compatibility, limit this property to data entry controls and
buttons.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 48 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ReadOnly (Boolean) – Sets the readOnly attribute on controls that support the HTML property readOnly: TextBoxes,
<input type='text'>, and <textarea> tags.

When true, the control is read only. When false, the control is editable.

It defaults to false.

 CssClass (string) – Sets the className attribute to a style sheet class name. Since the style includes so many visual
attributes, this is recommended over setting individual styles (which can be done in the Other property.)

When "{ORIG}", it automatically uses the initial value found on the page.

When "", it sets the value to "".

It defaults to "{ORIG}".

 FieldValue (string) – Sets the value property of these form elements: <input>, <textarea>, or <select>. This
includes TextBoxes, CheckBoxes, RadioButtons, Buttons, Lists, and DropDownLists. Lists and DropDownLists must
have a matching value associated with an item in their lists to update the text shown.

When "{ORIG}", it automatically uses the initial value found on the page.

When "", it sets the value to "". If the ControlToChange is a TextBox that supports the ValueWhenBlank property, it
will apply the ValueWhenBlank instead of "".

It defaults to "{ORIG}".

 InnerHTML (string) – Changes the innerHTML attribute. You can supply HTML or straight text. InnerHTML is the
text contained inside of the tags: <tag>innerHTML</tag>.

InnerHTML can be very harmful. For example, if you assign it to a <table> tag, it will overwrite all <tr> and <td>
tags it contains. You can easily input something that is not valid for the tag whose innerHTML you are modifying.

Good candidates are the Label and . If a Panel, <div>, TableCell, or <td> only contain text, they work well
too.

When "{ORIG}", it automatically uses the initial value found on the page.

When "", it sets the value to "".

It defaults to "{ORIG}".

 URL (string) – Changes the href or src attributes on , <input type=image>, <frame>, <iframe>, and
<a> tags. This includes the Image and HyperLink web controls.

Provide a valid URL. If a hyperlink uses a script in its href attribute, scripts should start with "javascript:".

When "", it automatically uses the initial value found on the page.

It defaults to "".

If your URL refers to a file within your web application, you can use the tilde “~” character as the first character to make
your web application more portable. The “~” is replaced by the web application path. Normally during development, that
folder is just below the domain root. In production, it is the domain root. For example, if you have an “Images” folder in
your web application root, declare the URL property like this: "~/Images/file.gif".

 Checked (Boolean) – Changes the checked attribute of CheckBoxes, CheckBoxLists, and RadioButtons.

When true, it marks the control.

When false, it unmarks the control.

It defaults to true.

 Other (PeterBlum.DES.CSAttributeDesc) – Changes any attribute or style to a value you specify. You must know the
name of the attribute or style and supply a legal value for it.

Any attribute you specify may not be compatible with all browsers. See Microsoft's DHTML Reference. Each DHTML
attribute topic will identify whether it is also supported in DOM by indicating its support in the W3C standards.

http://msdn2.microsoft.com/en-us/library/ms533050.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 49 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

You do not have to define the Other property in both FieldStateController.ConditionTrue and
FieldStateController.ConditionFalse. When you leave one without an AttributeName, DES will automatically
capture the current value from the browser as the page is loaded and use it. You can also assign entirely different
AttributeNames in ConditionTrue and ConditionFalse.

Note: If you want to specify more than one attribute or style, you must create one FieldStateController for each.

To set up the Other property, you must specify four values: AttributeName, Value, DataType, and AttributeType.

o AttributeName (string) – The name of the attribute or style. If "", the Other property is not used. It defaults to
"".

Note: Attribute names are case sensitive. Enter them exactly as specified in the DHTML or DOM specification.

o Value (string) – The value to assign to the attribute or style. It defaults to "". When the DataType is Boolean,
assign ‘false’ or ‘true’. When the DataType is Integer, assign only digits.

o DataType (enum PeterBlum.DES.AttributeDataType) – Specifies the data type of the attribute or style. You
must be sure to choose the correct type or you may get JavaScript errors at runtime. This enumerated type has
these values:

 String – This is the default

 Integer

 Boolean

o AttributeType (enum PeterBlum.DES.AttributeType) – Specifies whether the attribute is on the field or on the
style of the field. This enumerated type has these values:

 Attribute – This is the default.

 Style

ASP.NET Text Formatting for the Other Property

Here is the ASP.NET formatting for entering these properties:

<des:FieldStateController id="FieldStateController1" runat="server"
 ConditionTrue-Other-AttributeName="title"
 ConditionTrue-Other-Value="This is a tooltip"
 ConditionTrue-Other-AttributeType="Attribute"
 ConditionTrue-Other-DataType="String">

 ConditionFalse-Other-AttributeName="height"
 ConditionFalse-Other-Value="30"
 ConditionFalse-Other-AttributeType="Style"
 ConditionFalse-Other-DataType="Integer">
</des:FieldStateController>

 RunFunctionName (String) – Sometimes you need to write your own code to change attributes. For example, you have
a complex control that needs to hide several related controls when it is hidden. You can write client-side code to handle
this.

Use it to run JavaScript code that may do special things. See “Client-Side Function: The Run Function” for details.

This property is name of a JavaScript function that will run. It is only the function name, not

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 50 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Update Validators Properties
The Properties Editor shows these properties in the “Update Validators” category.

Note: These properties are supported by the DES Validation Framework but not the native Validation Framework.

 ValidateChangedControls (Boolean) – When true, validate the controls after applying changes. It validates controls
defined in ControlIDToChange, ControlToChange, and ControlConnections properties.

Generally this is done when the controls to change are data entry controls that have their visibility or enabled state
changed. Usually your Validators will have their Enabler properties set to detect the visibility or enabled state of the
control they are validating by using the VisibleCondition or EnabledCondition. See the “Non-Data Entry Conditions” in
the Validation User’s Guide.

When true, validate. When false, do not validate, but you can still use UseValidationGroup.

It defaults to false.

 UseValidationGroup (Boolean) – Runs all Validators whose group matches the ValidationGroup property upon
completion of the field state change. It behaves just like the user clicked a submit button for a particular group, including
an update of ValidationSummary controls.

Set this to true when you have a Validator control associated with a control that this FieldStateController has hidden or
disabled, usually in its Enabler property. As a result, the Validator will update itself.

This is an alternative to ValidateChangedControls.

It defaults to false.

The Validator control must include an Enabler property setting that detects the control it evaluates is hidden or disabled
using the VisibilityCondition or EnabledCondition.

 ValidationGroup (string) – Defines a group name used by Validators that you want to run when this
FieldStateController changes a field. When UseValidatorGroup is true, all Validators matching this group name are
run after the field state has changed. This allows validators to remove themselves when the state no longer supports
them. Use "*" to run through all groups. It defaults to "".

 RevalidateOnly (Boolean) – When using either ValidateChangedControls or UseValidationGroup properties, this
determines if all validators are evaluated or just those that were already evaluated once.

Each validator knows if it has previously been evaluated on this page, even if a postback occurs (so long as the server
side calls PeterBlum.DES.Globals.Page.Validate()) or on an AJAX callback. This can improve the user
interface by avoiding having error messages appear on fields that are part of the validation group but have yet to be
edited.

Set this to true when you don't want a validator to appear on fields the user hasn't edited based on the
FieldStateControllers action.

Set it to false to include all validators determined by the ValidateChangedControls or UseValidationGroup
properties.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 51 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

When to Use the Control Properties
The Properties Editor shows these properties in the “When To Use” category.

 Enabled (Boolean) – If you have added the FieldStateController to the page but need to disable it completely, set this
property to false. It defaults to true.

If the FieldStateController references another control whose Visible property is set to false, the FieldStateController is
automatically disabled. This is because when Visible is false, the web control does not generate any HTML and the
condition cannot evaluate it or the FieldStateController cannot modify it on the client-side.

 Enabler (PeterBlum.DES.BaseCondition) – There are times when a FieldStateController should be disabled. For
example, don’t change the state because the textbox is invisible or a checkbox is unmarked. These rules are formed by
Conditions classes with the Enabler property on each FieldStateController. By default, the Enabler property is set to
“None”, where it doesn’t disable the control. You can set it to any Condition, including those you may create
programmatically.

Consider these issues when using the Enabler:

o Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to
false when using it in an Enabler.

o Do not use this to detect a control whose Visible property is set to false. Such a control does not create
HTML for the client-side to use. Instead, set the Enabled property to false when the control is invisible.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor offers this window to select a Condition and to edit its properties.

1. Select the Condition from the DropDownList. See the section “Evaluating Conditions” of the Validation User’s
Guide.

2. Establish the properties in the Properties grid.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

3. Click OK.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 52 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding an Enabler with ASP.NET Declarative Syntax

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the FieldStateController with the Enabler set to the CheckStateCondition.

<des:FieldStateController id="FieldStateController1" runat="server"
 ControlIDToChange="Span1" >

 <EnablerContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1"
 EvaluateOnClickOrChange="false" >
 </des:CheckStateCondition>
 </EnablerContainer>

</des:FieldStateController>

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des:FieldStateController> tag. (It will
be added when using the Properties Editor but it’s completely meaningless.) Instead, the <EnablerContainer> tag
is a child of the FieldStateController tag. That tag never has any attributes. The child to <EnablerContainer>
defines the class and all properties of the Condition:

<des:classname [all properties] />

o des:classname – Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] – Enter the properties into the tag the same way you do for any other control.

Adding an Enabler Programmatically

Here are the steps to set the Enabler.

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each
demands an “owner” in the first parameter. That value must be the FieldStateController object.

2. Assign property values.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.

3. Assign the Condition object to the Enabler property.

In this example, add the CheckStateCondition, which is checking CheckBox1, to FieldStateController1.

[C#]

PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.EvaluateOnClickOrChange = false;
FieldStateController1.Enabler = vCond;

[VB]

Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.EvaluateOnClickOrChange = False
FieldStateController1.Enabler = vCond

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 53 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

 InAJAXUpdate (Boolean) – When the page uses AJAX callbacks to add, update, or remove this control, set this to
true. It defaults to false.

In addition, if any of these properties identify a non-DES control that participates in the AJAX callback, set this to
true:

o ControlIDToChange and ControlToChange

o Controls in ControlConnections.

o Condition. Look at the ControlIDToEvaluate and SecondControlIDToEvaluate.

o Enabler. Look at the ControlIDToEvaluate and SecondControlIDToEvaluate.

o ExtraControlsToRunThisAction.

Note: This is only needed for non-DES controls. DES controls will tell the FieldStateController if their own
IsAJAXUpdate property is true.

See “Using These Controls with AJAX” in the General Features Guide.

 RunOnPageLoad (Boolean) – When true, apply the field state based on the Condition as the page is loading. This
establishes an initial appearance. You normally do not set any properties on your controls that are controlled by the
FieldStateController.

Recommended in most cases. Set it to false only when you only want the controls being monitored to apply the field
state.

It defaults to true.

 UpdateWhileEditing (Boolean) – Determines if the FieldStateController is triggered as the user types into a textbox that
it uses to evaluate its condition. By default, it does not and only triggers when focus leaves the textbox. Set this to true
to evaluate the FieldStateController with each keystroke.

It defaults to false.

 SupportClientSideLookupByID (Boolean) - Allows JavaScript programmers to get to the client-side representation of
the FieldStateController object by the ClientID of the owner control.

Use the client-side function DES_FindAOById(ClientID) to search for the “Action object” that matches the
ClientID you specify. That function will return null if not found.

Use the Action object to invoke the FieldStateController as if the user changed a field associated with it. Pass the Action
object to the client-side function DES_DoAction(action object). The Action object contains the result of
evaluating the condition in the property CondResult. It is an integer whose values are:
1=success; 0=failed; -1=cannot evaluate.

Here is a function that invokes the FieldStateController and returns the result:

<script type='text/javascript' language='javascript'>
function InvokeFSC(pClientID)
{
 var vAO = DES_FindAOById(pClientID);
 DES_DoAction(vAO);
 return vAO.CondResult; //1=success; 0=failed; -1=cannot evaluate
}
</script>

Suppose you have a Button called Button1 that will be used to invoke FieldStateController1. Here is how you set it up to
call InvokeFSC in Page_Load():

Button1.Attributes.Add("onclick",
 "InvokeFSC('" + FieldStateController1.ClientID + "');return false;")

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 54 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

When SupportClientSideLookupByID is true, two things happen:

1. The ID is written as a property, CID, into the control. (It isn’t written by default to avoid adding excess text to
the page.)

2. If the Enabled property is false, normally no code is written to the client side. This is overridden and code is
generated so users can toggle the Enabled property.

It defaults to false.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 55 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

FSCOnCommand and MultiFSCOnCommand Controls
The PeterBlum.DES.FSCOnCommand and PeterBlum.DES.MultiFSCOnCommand controls are
FieldStateControllers that the user fires when they click on a button or other command. While the FieldStateController and
MultiFieldStateController Controls apply two states, based on a Condition, these two controls apply only one. A typical case
is to have a SelectAll button that marks all checkboxes in a CheckBoxList.

FSCOnCommand and MultiFSCOnCommand are actually subclasses of FieldStateController and MultiFieldStateController.
They were created to simplify the setup of a special case, where a button is clicked and a single state is applied. You assign
the controls that are the commands, the controls to change, and the changes to make.

These controls do most of their work on the client-side. If the browser does not support the client-side scripting needed to run
a FieldStateController, it is disabled. That will leave your controls with the state that you define in their properties on the
server side.

The FieldStateController adds no HTML to your page as it does it work through JavaScript. You can add them anywhere to
your web form.

Click on any of these topics to jump to them:

 Features

 Using the FSCOnCommand Controls

 Controls That Run The FSCOnCommand Control

 Attribute Values To Change

 Updating Validators

 Changing Visibility on a Complex Control

 Selectively Running the Control

 Extending the Attributes with Your Own Code

 Example: FSCOnCommand

 Example: MultiFSCOnCommand

 Adding the FSCOnCommand Control

 Adding the MultiFSCOnCommand Control

 Properties of FSCOnCommand And MultiFSCOnCommand

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 56 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
The FSCOnCommand and MultiFSCOnCommand controls make changes to the HTML elements on your page based on a
button click. They can change almost any element on your page:

 Show or hide

 Enable or disable form controls (textboxes, lists, buttons, etc)

 Change the ReadOnly state of a textbox

 Change the style sheet class name, which can deliver an entirely different appearance through style sheets

 Change the textual value of a textbox

 Change the value of the selected element in a listbox or dropdownlist

 Change the “innerHTML” of a Label, , or any other HTML tag that supports “innerHTML”

 Change the URL associated with hyperlinks, images and other HTML tags that have an href= or src= attribute.

 Change the mark in a checkbox or radiobutton

 Mark or unmark all checkboxes in a CheckBoxList

 Change the value of any document object model attribute that has a datatype of string, boolean or integer

 Change the value of any document object model style

 Run your own JavaScript to handle special situations

You can see how powerful these controls are. You only need to set properties on the controls and you have enhanced your
user interface.

The FSCOnCommand and MultiFSCOnCommand are invoked by a click on a “command” such as a button and apply a
single field state. Any HTML tag that supports the “onclick” event can be used to fire it. Examples:

 You have a CheckBoxList and use a button titled “Select All” to mark all checkboxes.

 In a tabbed interface, an image that represents a “tab” can show or hide a panel containing the tab’s “page”

Once these controls have done their task, they can optionally run the Validators on the field whose state was changed or run
an entire validation group.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 57 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the FSCOnCommand Controls
There are three elements that always must be set up on a FSCOnCommand or MultiFSCOnCommand control:

 The “commands” - controls that run the FSCOnCommand control when clicked

 The control or controls whose attributes that you want to change

 The attribute values that will change

Click on any of these topics to jump to them:

 Controls That Run The FSCOnCommand Control

 Controls To Change

 Attribute Values To Change

 Updating Validators

 Changing Visibility on a Complex Control

 Selectively Running the Control

 Extending the Attributes with Your Own Code

Controls That Run The FSCOnCommand Control
Add an element to the page that will run the FSCOnCommand Control. It can be almost any HTML tag that supports the
client-side onclick event. Buttons, Labels, Tables, Images, Hyperlinks and more are all usable. So create the interface that
you prefer. If you use an HTML tag in your web form, be sure it has an ID and runat=server.

Special concerns:

 In ASP.NET 1.x, the Button class always generates <input type='submit'>, which means it submits the page. A command
that is client-side only should not submit the page. Substitute the following:

<input type='button' id='an_id' runat='server' value='button_name' >

 In ASP.NET 2.x, the Button class can select between submit and non-submit styles with the UseSubmitBehavior
property. Set it to false. In addition, set the button’s OnClientClient property to "return: false;".

 When using a HyperLink, set the NavigationUrl property to "javascript:return false;".

 When using a tag, set the href attribute to "javascript:return false;"

Assign the command control to the ControlIDToRunThisAction property.

If you have several command controls that run the same FSCOnCommand control, add them to the
ExtraControlsToRunThisAction property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 58 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Controls To Change
You must assign the ID or an object reference to the control(s) that you want to change. The FSCOnCommand control
requires one control to change. Use ControlIDToChange when you have an ID or ControlToChange when you have an
object reference.

The MultiFSCOnCommand control changes as many controls as you want. Add
PeterBlum.DES.FSAControlConnection objects to the ControlConnections property. The
PeterBlum.DES.FSAControlConnection class can be assigned an ID to its ControlID property and an object
reference to its ControlInstance property.

Note: All controls must have an ID and runat=server property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 59 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Attribute Values To Change
With the following properties, you can change any of these attributes:

 VisibleState – changes the style:visibility and style:display attributes. Use True, False, or Ignore for its value.
(Programmers will find these on the enumerated type PeterBlum.DES.TrueFalseIgnore.) For a special case,
see “Changing Visibility on a Complex Control”.

 EnabledState – changes the disabled attribute on the controls that support it (which varies by browser). Use True,
False, or Ignore for its value. (Programmers will find these on the enumerated type
PeterBlum.DES.TrueFalseIgnore.)

 ReadOnly – changes the readOnly attribute on textboxes. Use the ReadOnly property. Use True, False, or Ignore
for its value. (Programmers will find these on the enumerated type PeterBlum.DES.TrueFalseIgnore.)

 CssClass – changes the style sheet class name.

 FieldValue – changes the value attribute of <input>, <textarea>, and <select> tags

 InnerHTMLState – changes the innerHTML attribute on any control. InnerHTML is found in tags that permit
contents between their begin and end tags, like this: <tag>innerHTML</tag>. A Label, Panel, and TableCell are
web controls that generate tags that support InnerHTML (, <div>, and <td> respectively.)

 URL – changes the href or src attribute to a new URL on , <input type=image>, <frame>, <iframe>,
and <a> tags.

 Checked – changes the checked attribute on a checkbox or radiobutton. Use True, False, or Ignore for its value.
(Programmers will find these on the enumerated type PeterBlum.DES.TrueFalseIgnore.)

 If you know the name and legal values of an attribute or style, there is an all-purpose property, Other, which will modify
the attribute or style with the value as the Condition changes.

For details on the above properties, see “Properties of ConditionTrue and ConditionFalse”.

In addition, you can supply a JavaScript function to run to handle unusual cases:

 A third party custom control uses its own JavaScript to adjust its properties.

 The control is created by JavaScript on the client side and has no server-side ID.

 A calculation must be performed before the setting can be determined.

You assign your function to the RunFunctionName property. See “Client-Side Function: The Run Function”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 60 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Updating Validators
Sometimes a field hidden or disabled by the FSCOnCommand control has an associated Validator whose error message is
showing. That message is no longer appropriate. To remove it, first set up the Enabler property on the Validator to detect
that the control is visible or enabled. Use the VisibleCondition or EnabledCondition class. These are described in the “Non-
Data Entry Conditions” section of the Validation User’s Guide.

Then set the ValidateChangedControls property to true.

If the FSCOnCommand control affects controls that are used in the Enabler properties of other Validators, let it run all
Validators in the validation group associated with those Validators. Set the UseValidatorGroup property to true and the
group name of the Validator in the ValidatorGroup property.

Use the RevalidateOnly property to evaluate only validators that have previously been evaluated on the page. This prevents
validator errors from appearing further down the page, where the user has not edited.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 61 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Changing Visibility on a Complex Control
Some web controls include a number of HTML tags. The control’s ID property may refer to just one of the HTML tags it
generates. If you use the FSCOnCommand to show and hide that control by its ID, you will only show or hide the one tag
associated with the control ID.

Example: The DateTextBox control

ALERT: DES’s own controls – including the DateTextBox - do not need the this technique as they automatically account for
the issue here. This is merely an example.

The textboxes in Peter’s Date And Time use multiple HTML tags. For example, the DateTextBox has an tag to the
right of the textbox which is used to toggle a popup calendar. The textbox in these controls is associated with the control’s
ID.

<input type='text' id='control_clientid' />

If you assign the ControlIDToChange property to the DateTextBox’s ID, it will only show and hide the textbox, leaving the
image visible.

Solution

Look at the HTML output of any web control to see which HTML tag is assigned the ID (specifically the ClientID property
value.) If that tag encloses all HTML for that control, you can use the web control’s ID with the
FSCOnCommand.ControlIDToChange property.

If the tag does not enclose the control, add a or <div> tag around the web control. Set the runat=server property
and assign an ID value. Set the FSCOnCommand.ControlIDToChange property to the ID of that or <div> tag.

Example: DateTextBox

ALERT: DES’s own controls – including the DateTextBox - do not need the this technique as they automatically account for
the issue here. This is merely an example.

 <des:DateTextBox runat="server" id="DateTextBox1" />

<des:FSCOnCommand runat="server" id="FSC1"
 ControlIDtoChange="DateTextBox1Container" ConditionTrue-Visible="true">
 <Condition>
 [you determine this]
 </Condition>
</des:FSCOnCommand>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 62 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Selectively Running the Control
Sometimes, you will want the command button to run only in certain situations. For example, if you use a checkbox as a
command to mark a CheckBoxList only when the user marks the checkbox, the FSCOnCommand should not run when the
user unmarks the checkbox.

Use the Enabler property to establish a Condition. When the Condition evaluates as “success”, the FSCOnCommand runs.
When it evaluates as “failed”, it does not run.

Example

This is a checkbox that marks a CheckBoxList when the user marks the checkbox.

<asp:CheckBox id=CheckBox1 runat="server" Text="Select all"></asp:CheckBox>
<asp:CheckBoxList id=CheckBoxList1 runat="server"
 RepeatDirection="Horizontal" RepeatLayout="Flow">
 <asp:ListItem Value="Bananas">Bananas</asp:ListItem>
 <asp:ListItem Value="Oranges">Oranges</asp:ListItem>
 <asp:ListItem Value="Peaches">Peaches</asp:ListItem>
</asp:CheckBoxList>
<des:FSCOnCommand id=FSCOnCommand1 runat="server"
 ControlIDToChange="CheckBoxList1" ControlIDToRunThisAction="CheckBox1"
 Checked="True" >
 <EnablerContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1">
 </des:CheckStateCondition>
 </EnablerContainer>
</des:FSCOnCommand>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 63 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: FSCOnCommand
Suppose you have a “Select All” button that marks all checkboxes in a CheckBoxList.

<P><des:button id="SelectAllBtn" runat="server" Text="Select All"
UseSubmitBehavior="false" /></P>

<P>Check all <asp:checkboxlist id=CheckBoxList1 runat="server"
 RepeatLayout="Flow" RepeatDirection="Horizontal">
 <asp:ListItem Value="1">1</asp:ListItem>
 <asp:ListItem Value="2">2</asp:ListItem>
 <asp:ListItem Value="3">3</asp:ListItem>
</asp:checkboxlist>
<des:FSCOnCommand id="FSCOnCommand1" runat="server"
 ControlIDToRunThisAction="SelectAllBtn" ControlIDToChange="CheckBoxList1"
 Checked="True"></des:FSCOnCommand>
</P>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 64 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: MultiFSCOnCommand
This is a modification of the previous example. Instead of having a CheckBoxList, it has individual CheckBoxes and uses the
MultiFSCOnCommand to update them.

<P>
<des:button id="SelectAllBtn" runat="server" Text="Select All"

UseSubmitBehavior="false" /></P>
<P>
<asp:CheckBox id="CheckBox1" runat="server" Text="1"></asp:CheckBox>
<asp:CheckBox id="CheckBox2" runat="server" Text="2"></asp:CheckBox>
<asp:CheckBox id="CheckBox3" runat="server" Text="3"></asp:CheckBox>
<des:MultiFSCOnCommand id="MultiFSCOnCommand1" runat="server"
 ControlIDToRunThisAction="SelectAllBtn" Checked="True">
 <ControlConnections>
 <des:FSAControlConnection ControlID="CheckBox1"></des:FSAControlConnection>
 <des:FSAControlConnection ControlID="CheckBox2"></des:FSAControlConnection>
 <des:FSAControlConnection ControlID="CheckBox3"></des:FSAControlConnection>
 </ControlConnections>
</des:MultiFSCOnCommand>
</P>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 65 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the FSCOnCommand Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Set up the controls whose attributes will change. You don’t have to set the properties that will be changed to their initial
(“off”) value. The FSCOnCommand control will do that for you, unless you set SetInitialAppearance to false.

3. Add the “command” control, such as the button. Special concerns:

 In ASP.NET 1.x, the Button class always generates <input type='submit'>, which means it submits the
page. A command that is client-side only should not submit the page. Substitute the following:

<input type='button' id='an_id' runat='server' value='button_name' >

 In ASP.NET 2.x, the Button class can select between submit and non-submit styles with the UseSubmitBehavior
property. Set it to false. In addition, set the button’s OnClientClient property to "return: false;".

 When using a HyperLink, set the NavigationUrl property to "javascript:return false;".

 When using a tag, set the href attribute to "javascript:return false;"

4. Add the FSCOnCommand control to the page. Its location does not matter as it contributes no HTML to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the FSCOnCommand control from the Toolbox onto your web form. It will look like this:

Text Entry Users

Add the control (inside the <form> area):

<des:FSCOnCommand id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the FSCOnCommand control to its Controls collection. Like all ASP.NET
controls, the FSCOnCommand control can be added to any control that supports child controls, like Panel, User
Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the PlaceHolder.

 Create an instance of the FSCOnCommand control class. The constructor takes no parameters.

 Assign the ID property.

 Add the FSCOnCommand control to the Controls collection.

In this example, the FSCOnCommand control is created with an ID of “FSCOnCommand1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.FSCOnCommand vFSC = new PeterBlum.DES.FSCOnCommand();
vFSC.ID = "FSCOnCommand1";
PlaceHolder1.Controls.Add(vFSC);

[VB]

Dim vFSC As PeterBlum.DES.FSCOnCommand = New PeterBlum.DES.FSCOnCommand()
vFSC.ID = "FSCOnCommand1"
PlaceHolder1.Controls.Add(vFSC)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 66 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

5. Assign the command control to the ControlIDThatRunsThisAction property. If you have several command controls,
add the rest to the ExtraControlsToRunThisAction property.

6. Set the ID of control whose attributes will change with the ControlIDToChange property or a reference to that control
with the ControlToChange property.

7. Assign the attributes to change. They are in the VisibleState, EnabledState, ReadOnly, CssClass, FieldValue,
InnerHTMLState, URL, Checked, and Other properties.

 VisibleState, EnabledState, ReadOnly, Checked use an enumerated type that has three values: Ignore, False,
and True. They default to Ignore. Change to False or True as needed. (Programmers will find these on the
enumerated type PeterBlum.DES.TrueFalseIgnore.)

Note: If you are changing the visibility on a web control, see “Changing Visibility on a Complex Control”.

 CssClass, FieldValue, and InnerHTMLState default to “{ORIG}” and will not be applied until you change their
value.

8. Sometimes a field hidden or disabled by the FSCOnCommand control has an associated Validator whose error message
is showing. That message is no longer appropriate. To remove it, first set up the Enabler property on the Validator to
detect that the control is visible or enabled. Use the VisibleCondition or EnabledCondition class. See the “Non-Data
Entry Conditions” in the Validation User’s Guide.

Then set the ValidateChangedControls property to true.

9. When the page uses AJAX to update any of its controls, you must do some additional setup. See “Here are some other
considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 67 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the MultiFSCOnCommand Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Set up the controls whose attributes will change. You don’t have to set the properties that will be changed to their initial
(“off”) value. The FSCOnCommand control will do that for you, unless you set SetInitialAppearance to false.

3. Add the “command” control, such as the button. Special concerns:

 In ASP.NET 1.x, the Button class always generates <input type='submit'>, which means it submits the
page. A command that is client-side only should not submit the page. Substitute the following:

<input type='button' id='an_id' runat='server' value='button_name' >

 In ASP.NET 2.x, the Button class can select between submit and non-submit styles with the UseSubmitBehavior
property. Set it to false.

 When using a HyperLink, set the NavigationUrl property to "javascript:return false;".

 When using a tag, set the href attribute to "javascript:return false;".

4. Add the MultiFSCOnCommand control to the page. Its location does not matter as it contributes no HTML to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the MultiFSCOnCommand control from the Toolbox onto your web form. It will look like this:

When you view the control in design mode, sometimes you will see the following:

Text Entry Users

Add the control (inside the <form> area):

<des:MultiFSCOnCommand id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the MultiFSCOnCommand control to its Controls collection. Like all
ASP.NET controls, the MultiFSCOnCommand control can be added to any control that supports child controls, like
Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

 Create an instance of the MultiFSCOnCommand control class. The constructor takes no parameters.

 Assign the ID property.

 Add the MultiFSCOnCommand control to the Controls collection.

In this example, the MultiFSCOnCommand control is created with an ID of “MultiFSCOnCommand1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.MultiFSCOnCommand vMFSC =
 new PeterBlum.DES.MultiFSCOnCommand();
vMFSC.ID = "MultiFSCOnCommand1";
PlaceHolder1.Controls.Add(vMFSC);

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 68 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Dim vMFSC As PeterBlum.DES.MultiFSCOnCommand = _
 New PeterBlum.DES.MultiFSCOnCommand()
vMFSC.ID = "MultiFSCOnCommand1"
PlaceHolder1.Controls.Add(vMFSC)

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

5. Assign the command control to the ControlIDThatRunsThisAction property. If you have several command controls,
add the rest to the ExtraControlsToRunThisAction property.

6. Create a list of control whose attributes will change within the ControlConnections property. Add
PeterBlum.DES.FSAControlConnection objects. Assign the ID of the control to the ControlID property or a
reference to the control in the ControlInstance property. ControlInstance can only be assigned programmatically.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor for the ControlConnections property provides a window where add
PeterBlum.DES.FSAControlConnection objects and assign the ControlID property to the ID of the control.

ASP.NET Text Formatting for the ControlConnections Property

ControlConnections is a type of collection. Therefore its ASP.NET text is nested as a series of
PeterBlum.DES.FSAControlConnection objects within the <ControlConnections> tag. Each
PeterBlum.DES.FSAControlConnection is a tag with <des:FSAControlConnection> followed by the
ControlID property.

The following example represents the same ControlConnections shown in the editor window above.

<des:MultiFSCOnCommand id="MultiFSCOnCommand1" runat="server">
 <ControlConnections>
 <des:FSAControlConnection ControlID="AddressLine1" />
 <des:FSAControlConnection ControlID="AddressLine2" />
 <des:FSAControlConnection ControlID="AddressLine3" />
 </ControlConnections>
</des:MultiFSCOnCommand>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 69 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically Adding Conditions

Use the Add() method on the ControlConnections property. Pass the ID, reference to the control, or
PeterBlum.DES.FSAControlConnection object. In this example, “AddressLine1” is an ID to a control and
AddressLine2 is a reference to the control object.

[C#]

MultiFSCOnCommand1.ControlConnections.Add("AddressLine1");

MultiFSCOnCommand1.ControlConnections.Add(AddressLine2);

[VB]

MultiFSCOnCommand1.ControlConnections.Add("AddressLine1")

MultiFSCOnCommand1.ControlConnections.Add(AddressLine2)

7. Assign the attributes to change. They are in the VisibleState, EnabledState, ReadOnly, CssClass, FieldValue,
InnerHTMLState, URL, Checked, and Other properties.

 VisibleState, EnabledState, ReadOnly, Checked use an enumerated type that has three values: Ignore, False,
and True. They default to Ignore. Change to False or True as needed. (Programmers will find these on the
enumerated type PeterBlum.DES.TrueFalseIgnore.)

Note: If you are changing the visibility on a web control, including Peter’s Date Package controls, see “Changing
Visibility on a Complex Control”.

 CssClass, FieldValue, and InnerHTMLState default to “{ORIG}” and will not be applied until you change their
value.

8. Sometimes a field hidden or disabled by the MultiFSCOnCommand control has an associated Validator whose error
message is showing. That message is no longer appropriate. To remove it, first set up the Enabler property on the
Validator to detect that the control is visible or enabled. Use the VisibleCondition or EnabledCondition class. See the
“Non-Data Entry Conditions” in the Validation User’s Guide.

Then set the ValidateChangedControls property to true.

9. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 70 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties of FSCOnCommand And MultiFSCOnCommand
Click on any of these topics to jump to them:

 Invoke the Change Properties

 Controls To Change Properties

 Attributes To Change Properties

 Update Validators Properties

 When To Use The Control Properties

 Behavior Properties

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 71 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Invoke the Change Properties
The Properties Editor shows these properties in the “Invokes The Change” category.

 ControlIDToRunThisAction (string) – The ID to the control that will run this FSCOnCommand control. If this ID is
unassigned, the FSCOnCommand control will do nothing.

This ID must be in the same or an ancestor naming container. If it is in another naming container, use
ControlToRunThisAction. Be sure that the control whose ID is used here has the runat=server property.

 ControlToRunThisAction (System.Web.UI.Control) – A reference to the control whose state will be changed. It is an
alternative to ControlIDToRunThisAction that you must assign programmatically. It accepts controls in any naming
container.

 ExtraControlsToRunThisAction (PeterBlum.DES.ControlConnectionCollection) – Identifies additional controls and
elements on the page that run this FSCOnCommand control when clicked.

This property is a collection of PeterBlum.DES.ControlConnection objects. You can assign the control’s ID to
the ControlConnection.ControlID property or a reference to the control in the ControlConnection.ControlInstance
property. When using the ControlID property, the control must be in the same or an ancestor naming container. If it is in
another naming container, use ControlInstance.

Be sure that each control assigned to this collection has the runat=server property.

ASP.NET Declarative Syntax for the ExtraControlsToRunThisAction Property

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET text is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:FSCOnCommand id="FSCOnCommand1" runat="server">

 <ExtraControlsToRunThisAction>
 <des:ControlConnection ControlID="Button2" />
 <des:ControlConnection ControlID="Label1" />
 </ExtraControlsToRunThisAction>

</des:FSCOnCommand>

Programmatically adding to the ExtraControlsToRunThisAction Property

Use the ExtraControlsToRunThisAction.Add() method to add an entry. This overloaded method takes one
parameter. Choose from the following:

 A reference to the control itself. This is the preferred form.

 A string giving the ID of the control. Do not use this when the control is not in the same naming container.

 An instance of the class PeterBlum.DES.ControlConnection.

This example shows how to update an existing PeterBlum.DES.ControlConnection and add a new entry.
Suppose the ASP.NET code looks like the text above and the Label1 control is not in the same or ancestor naming
container. Also suppose the control referenced in the property Button2 control must be added.

[C#]

uses PeterBlum.DES;
...
ControlConnection vConnection = (ControlConnection)
 FSCOnCommand1.ExtraControlsToRunThisAction[1];
vConnection.ControlInstance = Label1;
// add Button2. It can be either a control reference or its ID
FSCOnCommand1.ExtraControlsToRunThisAction.Add(Button2);

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 72 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Imports PeterBlum.DES
...
Dim vConnection As ControlConnection = _
 CType(FSCOnCommand1.ExtraControlsToRunThisAction(1), ControlConnection)
vConnection.ControlInstance = Label1
' add Button2. It can be either a control reference or its ID
FSCOnCommand1.ExtraControlsToRunThisAction.Add(Button2)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 73 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Controls To Change Properties
The Properties Editor shows these properties in the “Control To Change” category.

 ControlIDToChange (string) – Only on FSCOnCommand. The ID to the control whose state will be changed. If this ID
is unassigned, the FSCOnCommand control is disabled. This ID must be in the same or an ancestor naming container. If
it is in another naming container, use ControlToChange. Be sure that the control whose ID is used here has the
runat=server property.

Note: If you are changing the visibility on a web control, see “Changing Visibility on a Complex Control”.

 ControlToChange (System.Web.UI.Control) – Only on FSCOnCommand. A reference to the control whose state will
be changed. It is an alternative to ControlIDToChange that you must assign programmatically. It accepts controls in
any naming container.

 ControlConnections (PeterBlum.DES.ControlConnectionCollection) - Only on MultiFSCOnCommand. Add a
FSAControlConnection object for each control whose state will change.

This collection contains PeterBlum.DES.FSAControlConnection objects that defines a reference to a control,
either by its ID or an object reference. Set the FSAControlConnection.ControlID property to the ID of the control if it’s
in the same or ancestor naming container. Set the FSAControllConnection.ControlInstance property programmatically
to the control in any other naming container.

Be sure that each control whose ID is used has the runat=server property.

You can see how to set this property in design mode, in the webform and programmatically in step 6 of “Adding the
MultiFSCOnCommand Control”.

The ControlConnectionCollection class is subclassed from System.Collections.ArrayList and inherits all of its properties,
methods and events.

http://msdn2.microsoft.com/en-us/library/system.collections.arraylist(vs.71).aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 74 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Attributes To Change Properties
The Properties Editor shows these properties in the “Attributes to Change” category.

 VisibleState (enum PeterBlum.DES.TrueFalseIgnore) – Sets the visibility. The enumerated type
PeterBlum.DES.TrueFalseIgnore has these values:

o Ignore – Do not use this. This value is the default.

o True – Visible

o False – Hidden

The InvisiblePreservesSpaces property determines if it also retains or loses the space it occupies when it is hidden. It
defaults to true.

This property changes style:visibility. If InvisiblePreservesSpaces is true, it also changes style:display.

Note: If you are changing the visibility on a web control, including Peter’s Date Package controls, see “Changing
Visibility on a Complex Control”.

Note: The name VisibleState differs from the name “Visible” on the ConditionTrue and ConditionFalse properties
of the FieldStateController. This was done only because a Visible property already exists for a different purpose on
web controls.

 EnabledState (enum PeterBlum.DES.TrueFalseIgnore) – Sets the enabled state on controls that support the HTML
property disabled. The enumerated type PeterBlum.DES.TrueFalseIgnore has these values:

o Ignore – Do not use this. This value is the default.

o True – Enabled (disabled=false)

o False – Disabled

Most browsers support the disabled attribute on data entry controls and buttons (<input>, <select> and
<textarea> tags). Internet Explorer supports it on most tags. When you disable a <div>, for example, all data entry
controls it contains appear disabled. To provide cross browser compatibility, limit this property to data entry controls and
buttons.

Note: The name EnabledState differs from the name “Enabled” on the ConditionTrue and ConditionFalse
properties of the FieldStateController. This was done only because a Enabled property already exists for a different
purpose on web controls.

 ReadOnly (enum PeterBlum.DES.TrueFalseIgnore) – Sets the readOnly attribute on controls that support the HTML
property readOnly: TextBoxes, <input type='text'>, and <textarea> tags. The enumerated type
PeterBlum.DES.TrueFalseIgnore has these values:

o Ignore – Do not use this. This value is the default.

o True – Read only

o False – Editable

 CssClass (string) – Sets the className attribute to a style sheet class name. Since the style includes so many visual
attributes, this is recommended over setting individual styles (which can be done in the Other property.)

When "{IGNORE}", this property is not used.

It defaults to "{IGNORE}".

 FieldValue (string) – Sets the value property of these form elements: <input>, <textarea>, or <select>. This
includes TextBoxes, CheckBoxes, RadioButtons, Buttons, Lists, and DropDownLists. Lists and DropDownLists must
have a matching value associated with an item in their lists to update the text shown.

When "{IGNORE}", this property is not used.

It defaults to "{IGNORE}".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 75 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 InnerHTMLState (string) – Changes the innerHTML attribute. You can supply HTML or straight text. InnerHTML is
the text contained inside of the tags: <tag>innerHTML</tag>.

InnerHTML can be very harmful. For example, if you assign it to a <table> tag, it will overwrite all <tr> and <td>
tags it contains. You can easily input something that is not valid for the tag whose innerHTML you are modifying.

Good candidates are the Label and . If a Panel, <div>, TableCell, or <td> only contain text, they work well
too.

When "{IGNORE}", this property is not used.

It defaults to "{IGNORE}".

 URL (string) – Changes the href or src attributes on , <input type=image>, <frame>, <iframe>, and
<a> tags. This includes the Image and HyperLink web controls.

Provide a valid URL. If a hyperlink uses a script in its href attribute, scripts should start with "javascript:".

When "{IGNORE}", this property is not used.

It defaults to "{IGNORE}".

If your URL refers to a file within your web application, you can use the tilde “~” character as the first character to make
your web application more portable. The “~” is replaced by the web application path. Normally during development, that
folder is just below the domain root. In production, it is the domain root. For example, if you have an “Images” folder in
your web application root, declare the URL property like this: "~/Images/file.gif".

 Checked (enum PeterBlum.DES.TrueFalseIgnore) – Sets the checked attribute on radiobuttons and checkboxes (but not
a RadioButtonList or CheckBoxList). The enumerated type PeterBlum.DES.TrueFalseIgnore has these values:

o Ignore – Do not use this. This value is the default.

o True – Mark the checkbox

o False – Unmark the checkbox

 Other (PeterBlum.DES.CSAttributeDesc) – Changes any attribute or style to a value you specify. You must know the
name of the attribute or style and supply a legal value for it.

Any attribute you specify may not be compatible with all browsers. See Microsoft's DHTML Reference. Each DHTML
attribute topic will identify whether it is also supported in DOM by indicating its support in the W3C standards.

Note: If you want to specify more than one attribute or style, you must create one FSCOnCommand for each.

To set up the Other property, you must specify four values: AttributeName, Value, DataType, and AttributeType.

o AttributeName (string) – The name of the attribute or style. If "", the Other property is not used. It defaults to
"".

Note: Attribute names are case sensitive. Enter them exactly as specified in the DHTML or DOM specification.

o Value (string) – The value to assign to the attribute or style. It defaults to "". When the DataType is Boolean,
assign ‘false’ or ‘true’. When the DataType is Integer, assign only digits.

o DataType (enum PeterBlum.DES.AttributeDataType) – Specifies the data type of the attribute or style. You
must be sure to choose the correct type or you may get JavaScript errors at runtime. This enumerated type has
these values:

 String – This is the default

 Integer

 Boolean

o AttributeType (enum PeterBlum.DES.AttributeType) – Specifies whether the attribute is on the field or on the
style of the field. This enumerated type has these values:

 Attribute – This is the default.

 Style

http://msdn2.microsoft.com/en-us/library/ms533050.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 76 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET Text Formatting For the Other Property

Here is the ASP.NET formatting for entering these properties:

 <des:FSCOnCommand id="FieldStateController1" runat="server"
 Other-AttributeName="title"
 Other-Value="This is a tooltip"
 Other-AttributeType="Attribute"
 Other-DataType="String">

</des:FSCOnCommand>

 InvisiblePreservesSpace (Boolean) – Determines if a control takes up space on the page when it is invisible. When the
VisibleState property causes the field to be hidden, there are two ways the field can be hidden: Preserve the space of the
element or remove the element entirely. This depends on the display style attribute.

When true, space is preserved. (The style is set to visibility:hidden with no change to the display style.)

When false, the element is removed. (The style is visibility:hidden;display:none.) When the element becomes
visible once again, the display style is restored to its original value.

It defaults to true.

 RunFunctionName (String) – Sometimes you need to write your own code to change attributes. For example, you have
a complex control that needs to hide several related controls when it is hidden. You can write client-side code to handle
this.

Use it to run JavaScript code that may do special things. See “Client-Side Function: The Run Function” for details.

This property is name of a JavaScript function that will run. It is only the function name, not

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 77 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Update Validators Properties
The Properties Editor shows these properties in the “Update Validators” category.

Note: These properties are supported by the DES Validation Framework but not the native Validation Framework.

 ValidateChangedControls (Boolean) – When true, validate the controls after applying changes. It validates controls
defined in ControlIDToChange, ControlToChange, and ControlConnections properties.

Generally this is done when the controls to change are data entry controls that have their visibility or enabled state
changed. Usually your Validators will have their Enabler properties set to detect the visibility or enabled state of the
control they are validating by using the VisibleCondition or EnabledCondition class. See the “Non-Data Entry
Conditions” in the Validation User’s Guide.

When true, validate. When false, do not validate, but you can still use UseValidationGroup.

It defaults to false.

 UseValidationGroup (Boolean) – Runs all Validators whose group matches the ValidationGroup property upon
completion of the field state change. It behaves just like the user clicked a submit button for a particular group, including
an update of ValidationSummary controls.

Set this to true when you have a Validator control associated with a control that this FSCOnCommand control has
hidden or disabled, usually in its Enabler property. As a result, the Validator will update itself.

This is an alternative to ValidateChangedControls.

It defaults to false.

The Validator control must include an Enabler property setting that detects the control it evaluates is hidden or disabled
using the VisibilityCondition or EnabledCondition.

 ValidationGroup (string) – Defines a group name used by Validators that you want to run when this FSCOnCommand
control changes a field. When UseValidatorGroup is true, all Validators matching this group name are run after the
field state has changed. This allows validators to remove themselves when the state no longer supports them. Use "*" to
run through all groups. It defaults to "".

 RevalidateOnly (Boolean) – When using either ValidateChangedControls or UseValidationGroup properties, this
determines if all validators are evaluated or just those that were already evaluated once.

Each validator knows if it has previously been evaluated on this page, even if a postback occurs (so long as the server
side calls PeterBlum.DES.Globals.Page.Validate()) or on an AJAX callback. This can improve the user
interface by avoiding having error messages appear on fields that are part of the validation group but have yet to be
edited.

Set this to true when you don't want a validator to appear on fields the user hasn't edited based on this control’s action.

Set it to false to include all validators determined by the ValidateChangedControls or UseValidationGroup
properties.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 78 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

When To Use The Control Properties
The Properties Editor shows these properties in the “When To Use” category.

 SetInitialAppearance (Boolean) – Determines if the opposite settings are applied to the control to change when the
page is first loaded. When true, it applies the opposite settings. When false, you are responsible to set control to
change with the desired initial appearance.

It defaults to true.

 Enabled (Boolean) – If you have added the FSCOnCommand control to the page but need to disable it completely, set
this property to false. It defaults to true.

 Enabler (PeterBlum.DES.BaseCondition) – There are times when a FSCOnCommand control should be disabled. For
example, your command button is a checkbox that should only apply attributes when the checkbox is marked. These
rules are formed by Conditions classes with the Enabler property on each FSCOnCommand control. By default, the
Enabler property is set to “None”, where it doesn’t disable the control. You can set it to any Condition, including those
you may create programmatically.

Consider these issues when using the Enabler:

o Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to
false when using it in an Enabler.

o Do not use this to detect a control whose Visible property is set to false. Such a control does not create
HTML for the client-side to use. Instead, set the Enabled property to false when the control is invisible.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor offers this window to select a Condition and to edit its properties.

o Select the Condition from the DropDownList.

o Establish the properties in the Properties grid.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

o Click OK.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 79 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET Declarative Syntax for the Enabler Property

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the FSCOnCommand with the Enabler set to the CheckStateCondition.

<des:FSCOnCommand id="FSCOnCommand1" runat="server"
 ControlIDToChange="Span1" >

 <EnablerContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1"
 EvaluateOnClickOrChange="false" >
 </des:CheckStateCondition>
 </EnablerContainer>

</des:FSCOnCommand >

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des:FSCOnCommand> tag. (It will be added
when using the Properties Editor but it’s completely meaningless.) Instead, the <EnablerContainer> tag is a child
of the FSCOnCommand tag. That tag never has any attributes. The child to <EnablerContainer> defines the class
and all properties of the Condition:

<des:classname [all properties] />

o des:classname – Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] – Enter the properties into the tag the same way you do for any other control.

Programmatically Setting The Enabler

Here are the steps to set the Enabler.

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each
demands an “owner” in the first parameter. That value must be the FieldStateController object.

2. Assign property values.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.

3. Assign the Condition object to the Enabler property.

In this example, add the CheckStateCondition, which is checking CheckBox1, to FSCOnCommand1.

[C#]

PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.EvaluateOnClickOrChange = false;
FSCOnCommand1.Enabler = vCond;

[VB]

Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.EvaluateOnClickOrChange = False
FSCOnCommand1.Enabler = vCond

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 80 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

 InAJAXUpdate (Boolean) – When the page uses AJAX callbacks to add, update, or remove this control, set this to
true. It defaults to false.

In addition, if any of these properties identify a control that participates in the AJAX callback, set this to true:

o ControlIDToRunThisAction and ControlToRunThisAction

o Controls in ControlConnections

o Enabler. Look at the ControlIDToEvaluate and SecondControlIDToEvaluate.

o ExtraControlsToRunThisAction.

Note: This is only needed for non-DES controls. DES controls will tell the FSCOnCommand control if their own
IsAJAXUpdate property is true.

See “Using These Controls with AJAX” in the General Features Guide.

 UpdateWhileEditing (Boolean) – Determines if the FSCOnCommand is triggered as the user types into a textbox that it
uses to evaluate its condition. By default, it does not and only triggers when focus leaves the textbox. Set this to true to
evaluate the FSCOnCommand with each keystroke.

It defaults to false.

 SupportClientSideLookupByID (Boolean) - Allows JavaScript programmers to get to the client-side representation of
the FSCOnCommand object by the ClientID of the owner control.

Use the client-side function DES_FindAOById(ClientID) to search for the “Action object” that matches the
ClientID you specify. That function will return null if not found.

Use the Action object to invoke the FSCOnCommand as if the user changed a field associated with it. Pass the Action
object to the client-side function DES_DoAction(action object). The Action object contains the result of
evaluating the condition in the property CondResult. It is an integer whose values are:
1=success; 0=failed; -1=cannot evaluate.

Here is a function that invokes the FSCOnCommand and returns the result:

<script type='text/javascript' language='javascript'>
function InvokeFSC(pClientID)
{
 var vAO = DES_FindAOById(pClientID);
 DES_DoAction(vAO);
 return vAO.CondResult; //1=success; 0=failed; -1=cannot evaluate
}
</script>

Suppose you have a Button called Button1 that will be used to invoke FSCOnCommand1. Here is how you set it up to
call InvokeFSC in Page_Load():

Button1.Attributes.Add("onclick",
 "InvokeFSC('" + FSCOnCommand1.ClientID + "');return false;")

When SupportClientSideLookupByID is true, two things happen:

1. The ID is written as a property, CID, into the control. (It isn’t written by default to avoid adding excess text to
the page.)

2. If the Enabled property is false, normally no code is written to the client side. This is overridden and code is
generated so users can toggle the Enabled property.

It defaults to false.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 81 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 82 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

CalculationController
The CalculationController lets you create a calculation involving IntegerTextBox, DecimalTextBox, CurrencyTextBox, and
PercentTextBox controls. Its value can be displayed on the page and used by Validators and Conditions.

The CalculationController has a powerful expression building tool. You can include constants, subexpressions, and IF
statement logic based on Conditions. You can even provide your own custom functions for more advanced calculations.

The CalculationController itself does not generate any HTML. It creates javascript that monitors edits made to textboxes and
displays results in another control, such as a Label or DecimalTextBox. So you can drop it anywhere on the page. It provides
support both on the client and server side. So after post back, Validators can still evaluate themselves against this control and
your own code can extract the calculation result.

Click on any of these topics to jump to them:

 Features

 Using the CalculationController

 Creating the Expression: The CalcItem classes

 Displaying The Result

 Using the Result in Validators and Conditions

 Using the Result in Your Server-Side Code

 Running CalculationControllers On Demand

 Adding the CalculationController Control

 Properties on CalculationController

 Properties on CalcItem Classes

 Properties Common To All CalcItem Classes

 Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class

 Properties for the PeterBlum.DES.ListConstantsCalcItem Class

 Properties for the PeterBlum.DES.CheckStateCalcItem Class

 Properties for the PeterBlum.DES.ConstantCalcItem Class

 Properties for the PeterBlum.DES.ConditionCalcItem Class

 Properties for the PeterBlum.DES.ParenthesisCalcItem Class

 Properties for the PeterBlum.DES.CalcControllerCalcItem Class

 Adding Custom Code to a CalcItem

 Subclassing CalculationController

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 83 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
Use demos here: http://www.peterblum.com/DES/DemoCalc.aspx.

The CalculationController lets you describe calculations that involve numbers in textboxes, constants and other logic. The
values from these calculations can be used in the following ways:

 Displayed on the page, whether in a Label or a textbox.

 Validators that compare numbers can evaluate the value simply by setting their ControlIDToEvaluate property to this
control’s ID. Supported validators include: CompareToValueValidator, CompareTwoFieldsValidator, RangeValidator,
and DifferenceValidator. In addition, the RequiredTextValidator can determine if the calculation had an error.

 Like Validators, their Conditions can evaluate the value. For example, the Enabler property on various controls use
Conditions. Now those Conditions can enable their control based on the result of a calculation.

 The calculations can include the values of other CalculationControllers on the page. This allows reuse of a common
calculation, reducing the size of the client-side code and slightly improving performance by reducing the number of
times the code executes a calculation.

While it is typical to add together the values of textboxes to form a total, the CalculationController can handle far more
powerful expressions. Here are the elements that you can use to develop your expressions:

 Use these textboxes: IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox.

 Lists, DropDownLists, RadioButtonLists, and CheckBoxLists can have numeric values assigned to each selectable
element that are used when selected.

 Checkboxes and RadioButtons can have numeric values for their checked and uncheck states.

 Constants (numbers)

 Subexpressions which are the same idea as putting parenthesis around an expression to have it calculate together.

 Use any Condition object to select between two expressions. One runs if the Condition evaluates as “success”. The other,
if the Condition evaluates as “failed”. This allows your expression to have different logic based on the settings on the
screen. Basically, you are developing “IF” statements.

Since the CompareToValueCondition and RangeCondition now can evaluate the values of CalculationControllers, your
IF statements can be decided by calculations too.

 Each element – textbox, constant, subexpression, and “IF” statement – can use these operators: add, subtract, multiply,
and divide.

Here is an example of two CalculationControllers on a page, using the image shown in design mode. They refer to three
controls: two DecimalTextBoxes and a CheckBox. The DecimalTextBoxes are used for the calculation. The CheckBox is
used for the Condition object (a CheckStateCondition):

To further refine your expressions, the CalculationController has these features:

 The result, which is initially a decimal value, can be rounded in several ways. It can round to a certain number of
decimal places and use different rounding rules.

 For blank textboxes, you can determine if it’s an error or treated as 0.

 You can supply client- and server-side functions that let you customize the result of any element. For example, if you
want the value of a textbox to be run through the Sin() function, you write a function to use that calculation. The
CalculationController will pass you the value. Your function can report an error for an illegal value and correct errors.

 It gracefully handles errors, such as divide by zero.

http://www.peterblum.com/DES/DemoCalc.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 84 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the CalculationController
Use demos here: http://www.peterblum.com/DES/DemoCalc.aspx.

There are several aspects to using this control:

 Create a mathematical expression in the Expression property.

 Optionally display the result of the calculation. There are formatting rules to consider.

 Optionally let a Validator evaluate the result of the calculation.

 Optionally use the result of the calculation in your own code.

 Display a different number based on a selection in a list, DropDownList, or RadioButtonList.

Click on any of these topics to jump to them:

 Creating the Expression: The CalcItem classes

 PeterBlum.DES.NumericTextBoxCalcItem

 PeterBlum.DES.ConstantCalcItem

 PeterBlum.DES.ListConstantsCalcItem

 PeterBlum.DES.CheckStateCalcItem

 PeterBlum.DES.ParenthesisCalcItem

 PeterBlum.DES.ConditionCalcItem

 PeterBlum.DES.CalcControllerCalcItem

 General Guidelines for CalcItem objects

 Displaying The Result

 Using the Result in Validators and Conditions

 Using the Result in Your Server-Side Code

 Running CalculationControllers On Demand

http://www.peterblum.com/DES/DemoCalc.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 85 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Creating the Expression: The CalcItem classes
The calculation is created within the Expression property on the CalculationController. This property is a collection which
holds a list of the following objects.

Click on any of these topics to jump to them:

 PeterBlum.DES.NumericTextBoxCalcItem

 PeterBlum.DES.ConstantCalcItem

 PeterBlum.DES.ListConstantsCalcItem

 PeterBlum.DES.CheckStateCalcItem

 PeterBlum.DES.ParenthesisCalcItem

 PeterBlum.DES.ConditionCalcItem

 PeterBlum.DES.CalcControllerCalcItem

 General Guidelines for CalcItem objects

These classes are subclassed from PeterBlum.DES.BaseCalcItem. See “Properties Common To All CalcItem
Classes”.

PeterBlum.DES.NumericTextBoxCalcItem

Identifies one IntegerTextBox, DecimalTextBox, CurrencyTextBox, or PercentTextBox that supplies a number into the
calculation. Usually your calculation will have one or more of these. The TextBox will be set up so that any time it changes
(after focus is lost), the calculation will run.

Set the numeric TextBox in the TextBoxControlID property. Since a textbox can be blank or contain an illegal (non-
numeric) value, use the BlankIsZero and InvalidIsZero properties to determine if these states use the value of 0 or indicate
an error.

See “Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class”.

Example

Expression: (IntegerTextBox1 + IntegerTextBox2)

The Expression property contains:

NumericTextBoxCalcItem for IntegerTextBox1

NumericTextBoxCalcItem for IntegerTextBox2 with Operator = Add (which is the default value for that
property)

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server"
 ShowValueControlID="Label1" >

<Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="IntegerTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="IntegerTextBox2" />
</Expression>

</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 86 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.ConstantCalcItem

Supply a number constant into the calculation. Assign the constant to the Constant property.

See “Properties for the PeterBlum.DES.ConstantCalcItem Class”.

Example

Expression: (IntegerTextBox1 + IntegerTextBox2) * 25

The Expression property contains:

NumericTextBoxCalcItem for IntegerTextBox1

NumericTextBoxCalcItem for IntegerTextBox2 with Operator = Add (which is the default value for that
property)

ConstantCalcItem for 25 with Operator = Multiply

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server"
 ShowValueControlID="Label1" >

<Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="IntegerTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="IntegerTextBox2" />
 <des:ConstantCalcItem Constant="25" Operator="Multiply" />
</Expression>

</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 87 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.ListConstantsCalcItem

Associate the items in a ListBox or DropDownList with constants. As the user changes the list’s selection, the calculation
gets a different constant. For example, when SelectedIndex is 0, the value is 25 and when SelectedIndex is 1 through 4, the
value is 30.

Set the ListBox or DropDownList controls in the ListControlID property. Add
PeterBlum.DES.ConstantForSelectedIndex objects to the ConstantsForSelectedIndexes property to define the
SelectedIndexes that are associated with a specific value.

You can make a selected index report an error to the CalculationController. You can also define a default number when an
index is selected but has no matching item in the ConstantsForSelectedIndexes property.

See “Properties for the PeterBlum.DES.ListConstantsCalcItem Class”.

Example

Expression: (value from the selected item in ListBox1) * 25

The Expression property contains:

ListConstantsCalcItem for ListBox1 where index 0 is 5, indices 1 and 2 are 10, and index 3 is 25.

ConstantCalcItem for 25 with Operator = Multiply

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server"
 ShowValueControlID="Label1" >

<Expression>
 <des:ListConstantsCalcItem ListControlID="ListBox1" />
 <ConstantsForSelectedIndexes>

 <des:ConstantForSelectedIndex StartIndex="0" Constant="5" />
 <des:ConstantForSelectedIndex StartIndex="1" EndIndex="2"
 Constant="10" />
 <des:ConstantForSelectedIndex StartIndex="3" Constant="25" />

 </ConstantsForSelectedIndexes>
 </des:ListConstantsCalcItem>
 <des:ConstantCalcItem Constant="25" Operator="Multiply" />
</Expression>

</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 88 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.CheckStateCalcItem

Associated two values with a CheckBox or RadioButton, where one value is used when its checked and the other when it
isn’t. It can be used with CheckBoxList and RadioButtonList controls so long as you identify a specific button in the list by
its index.

Set the CheckBox, RadioButton, CheckBoxList, or RadioButtonList in the CheckedStateControlID property. When using a
CheckBoxList or RadioButtonList, specify which button with its Index property.

Define the values within the ValueWhenChecked and ValueWhenUnchecked properties.

One common usage is to add a series of checkboxes that are checked and ignore those that are not checked. To do this,
include a CheckStateCalcItem object for every checkbox, adding them together. Since this class also returns a value for the
unchecked state, usually you use ValueWhenUnchecked = 0 when adding or subtracting. You use ValueWhenUnchecked
= 1 when multiplying or dividing. You can use the same technique with a list of RadioButtons to determine a value for the
one that is checked.

See “Properties for the PeterBlum.DES.CheckStateCalcItem Class”.

Example 1

Suppose there are 3 radiobuttons grouped together and each has its own value. This determines the value of the selected one
by evaluating all 3 and adding their values together. Those that are unchecked have a value of 0 (from their
ValueWhenUnchecked property which defaults to 0.)

The Expression property contains:

CheckStateCalcItem for RadioButton1 with a value of 10 when checked and 0 when unchecked.

CheckStateCalcItem for RadioButton2 with a value of 20 when checked and 0 when unchecked.

CheckStateCalcItem for RadioButton3 with a value of 30 when checked and 0 when unchecked.

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server"
 ShowValueControlID="Label1" >

<Expression>
 <des:CheckStateCalcItem CheckStateControlID="RadioButton1"
 ValueWhenChecked="10" />
 <des:CheckStateCalcItem CheckStateControlID="RadioButton2"
 ValueWhenChecked="20" />
 <des:CheckStateCalcItem CheckStateControlID="RadioButton3"
 ValueWhenChecked="30" />
</Expression>

</des:CalculationController>

EXAMPLES CONTINUE ON THE NEXT PAGE

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 89 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2

Suppose there is a CheckBoxList where each checkbox has a numeric value. This determines the sum of all checked buttons
by evaluating all 3 and adding their values together. Those that are unchecked have a value of 0 (from their
ValueWhenUnchecked property which defaults to 0.)

The Expression property contains:

CheckStateCalcItem for CheckBoxList1 at index 0 with a value of 10 when checked and 0 when unchecked.

CheckStateCalcItem for CheckBoxList1 at index 1 with a value of 20 when checked and 0 when unchecked.

CheckStateCalcItem for CheckBoxList1 at index 2 with a value of 30 when checked and 0 when unchecked.

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server"
 ShowValueControlID="Label1" >

<Expression>
 <des:CheckStateCalcItem CheckStateControlID="CheckBoxList1"
 Index="0" ValueWhenChecked="10" />
 <des:CheckStateCalcItem CheckStateControlID="CheckBoxList1"
 Index="1" ValueWhenChecked="20" />
 <des:CheckStateCalcItem CheckStateControlID="CheckBoxList1"
 Index="2" ValueWhenChecked="30" />
</Expression>

</des:CalculationController>

Example 3

You can see a real-world example on the DES Ordering page: http://www.peterblum.com/des/order.aspx. To see the source
code, view http://www.peterblum.com/des/orderpagemarkup.aspx.

http://www.peterblum.com/des/order.aspx�
http://www.peterblum.com/des/orderpagemarkup.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 90 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.ParenthesisCalcItem

Create a subexpression whose items are calculated together in its own Expression property. It’s the same idea as using
parenthesis in computer code. For example, in (TextBox1 * 4) + (TextBox2 * 3) the Expression property contains two
ParenthesisCalcItem objects, each which hold their own NumericTextBoxCalcItem and ConstantCalcItem objects.

See “Properties for the PeterBlum.DES.ParenthesisCalcItem Class”.

Example

Expression: (DecimalTextBox1 + DecimalTextBox2) * 25

The Expression property contains:

ParenthesisCalcItem with its own expression that adds the two textboxes like this:

NumericTextBoxCalcItem for IntegerTextBox1

NumericTextBoxCalcItem for IntegerTextBox2 with Operator = Add (which is the default value for
that property)

ConstantCalcItem for 25 with Operator = Multiply

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server">
<Expression>
 <des:ParenthesisCalcItem>
 <Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox2" />
 </Expression>
 </des:ParenthesisCalcItem>
 <des:ConstantCalcItem Constant="25" Operator="Multiply" />
</Expression>

</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 91 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.ConditionCalcItem

Create an IF statement that uses any Condition object to determine whether to run subexpressions located in
ExpressionWhenTrue and ExpressionWhenFalse properties. This allows great flexibility in your calculations. The
Condition object is assigned to the Condition property. See the “Evaluating Conditions” section of the Validation User’s
Guide.

See “Properties for the PeterBlum.DES.ConditionCalcItem Class”.

Example 1

Suppose you have 4 IntegerTextBoxes. You want a CheckBox to determine whether to add only two or all four of them. Use
a CheckStateCondition pointing to the CheckBox in the Condition property. ExpressionWhenTrue contains four
NumericTextBoxCalcItem objects. ExpressionWhenFalse contains two NumericTextBoxCalcItem objects. The expression
would look like this:

Expression: IF (CheckBox1.Checked = True) THEN
(TextBox1 + TextBox2 + TextBox3 + TextBox4) ELSE (TextBox1 + TextBox2)

The result is shown in a Label control called Label1.

<des:CalculationController id="CalculationController1" runat="server">
<Expression>

<des:ConditionCalcItem>

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 </ConditionContainer>

 <ExpressionWhenTrue>
 <des:NumericTextBoxCalcItem TextBoxControlID="IntgerTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="IntgerTextBox2" />
 <des:NumericTextBoxCalcItem TextBoxControlID="IntgerTextBox3" />
 <des:NumericTextBoxCalcItem TextBoxControlID="IntgerTextBox4" />
 </ExpressionWhenTrue>

 <ExpressionWhenFalse>
 <des:NumericTextBoxCalcItem TextBoxControlID="IntgerTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="IntgerTextBox2" />
 </ExpressionWhenFalse>

</des:ConditionCalcItem>
</Expression>

</des:CalculationController>

EXAMPLES CONTINUE ON THE NEXT PAGE

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 92 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example 2

You have a screen with shipping charges determined by a DropDownList. Use SelectedIndexCondition to evaluate which
index is selected in the DropDownList in the Condition property. The ExpressionWhenTrue property will have a
ConstantCalcItem for shipping charges of the index selected. The ExpressionWhenFalse property will have another
ConditionCalcItem to compare another index. The expression would look like this:

Expression: IF (ShippingCharges.SelectedIndex = 0) THEN 3.50 ELSE 6.00

<des:CalculationController id="CalculationController1" runat="server">
<Expression>

<des:ConditionCalcItem>

 <ConditionContainer>
 <des:SelectedIndexCondition ControlIDToEvaluate="ShippingCharges"
 Index="0" />
 </ConditionContainer>

 <ExpressionWhenTrue>
 <des:ConstantCalcItem Constant="3.5"/>
 </ExpressionWhenTrue>

 <ExpressionWhenFalse>
 <des:ConstantCalcItem Constant="6.0"/>
 </ExpressionWhenFalse>

</des:ConditionCalcItem>
</Expression>

</des:CalculationController>

Example 3

Test the total of 2 textboxes are within the range of 0 to 100. If they are in that range, use that value. Otherwise, use 0. To do
this, you create a second CalculationController that totals the textboxes and use a RangeCondition to evaluate that second
CalculationController is within the range:

Expression: IF (CalculationController2 is between 0 and 100) THEN
(use CalculationController2’s value) ELSE (0)

<des:CalculationController id="CalculationController1" runat="server">
<Expression>

<des:ConditionCalcItem>

 <ConditionContainer>
 <des:RangeCondition ControlIDToEvaluate="CalculationController2"
 Minimum="0" Maximum="100" />
 </ConditionContainer>
 <ExpressionWhenTrue>
 <des:CalcControllerCalcItem ControlID="CalculationController2"/>
 </ExpressionWhenTrue>
 <ExpressionWhenFalse>
 <des:ConstantCalcItem Constant="0"/>
 </ExpressionWhenFalse>

</des:ConditionCalcItem>
</Expression>

</des:CalculationController>

<des:CalculationController id="CalculationController2" runat="server">
<Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox2" />
</Expression>

</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 93 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.CalcControllerCalcItem

Use another CalculationController for a part of the calculation. While you can reproduce a calculation several times in an
expression, programmers prefer to write functions to encapsulate code that is reused. This has several benefits here:

 When using a ConditionCalcItem, you might want a Condition to look at the value of a calculation. You use the
technique described above in the third example of ConditionCalcItem to create a second CalculationController.
You reuse the value of the second CalculationController within this CalculationController with a
CalcControllerCalcItem:

IF (CalculationController2 is between 0 and 100) THEN
(CalculationController2) ELSE (0)

 Less JavaScript is generated, reducing the size of the page. While each CalculationController doesn’t generate much
JavaScript, this is an optimization.

 Less JavaScript is executed because the CalculationController is run once for each request. This is a speed optimization.

Set the ID of the other CalculationController in the ControlID property or a reference to CalculationController object in the
ControlInstance property.

See “Properties for the PeterBlum.DES.CalcControllerCalcItem Class”.

Example

Test the total of 2 textboxes are within the range of 0 to 100. If they are in that range, use that value. Otherwise, use 0. To do
this, you create a second CalculationController that totals the textboxes and use a RangeCondition to evaluate that second
CalculationController is within the range:

Expression: IF (CalculationController2 is between 0 and 100) THEN
(use CalculationController2’s value) ELSE (0)

<des:CalculationController id="CalculationController1" runat="server">
<Expression>

<des:ConditionCalcItem>

 <ConditionContainer>
 <des:RangeCondition ControlIDToEvaluate="CalculationController2"
 Minimum="0" Maximum="100" />
 </ConditionContainer>
 <ExpressionWhenTrue>
 <des:CalcControllerCalcItem ControlID="CalculationController2"/>
 </ExpressionWhenTrue>
 <ExpressionWhenFalse>
 <des:ConstantCalcItem Constant="0"/>
 </ExpressionWhenFalse>

</des:ConditionCalcItem>
</Expression>

</des:CalculationController>

<des:CalculationController id="CalculationController2" runat="server">
<Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1" />
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox2" />
</Expression>

</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 94 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

General Guidelines for CalcItem objects

Each of the “CalcItem” objects described above provide an operator to add, subtract, multiply, and divide by the previous
object in the expression. Set the operator in the Operator property. For the first element in an expression or subexpression,
generally always use the Add operator.

The result of the expression may need to be rounded to an integer or a specific number of decimal places. Use the
RoundMode and DecimalPlaces properties to establish rounding. RoundMode provides 5 common rounding rules for you
to choose from.

Each CalcItem object allows you to define custom code to take the numeric value of the CalcItem object and further process
it. You can change the value, return the original value, return a value when the CalcItem object reported an error, or indicate
an error (such as the value was out of range). Use the CustomCalcFunctionName property for the client-side code and
CustomCalculation property for the server-side code.

The DES Ordering page uses several CalculationControllers that evaluate radiobuttons, checkboxes, and an IntegerTextBox
to determine the subtotal of your order and the per-unit value. It uses NumericTextBoxCalcItem, CheckStateCalcItem,
ParenthesisCalcItem, and ConditionCalcItem objects.

See the live page at http://www.peterblum.com/des/order.aspx. To see its source code, view
http://www.peterblum.com/des/orderpagemarkup.aspx.

http://www.peterblum.com/des/order.aspx�
http://www.peterblum.com/des/orderpagemarkup.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 95 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Displaying The Result
You can display the result in any of these types of controls: Label, LocalizableLabel, IntegerTextBox, DecimalTextBox, and
CurrencyTextBox. Set the ID to the control in the ShowValueControlID property or a reference to that control in
ShowValueInstance. You are not required to display the value. If you leave these properties unassigned, the
CalculationController can still be used by Validators, Conditions, and other CalculationControllers.

When displaying the result in IntegerTextBox, DecimalTextBox, or CurrencyTextBox, those controls will dictate the
formatting. When the DecimalPlaces property is Auto, it uses the number of decimal places appropriate for the control. For
example, an IntegerTextBox has 0 decimal places.

When displaying the result in a Label or LocalizableLabel, you have many formatting properties:

 Use the DecimalPlaces property to determine the number of decimal places.

 If you want to show thousands separators, set LabelFormatThousandsSep to true.

 If you want to show a currency symbol, set LabelFormatCurrencySymbol to true.

 You can either replace the entire text of the Label or replace a token. When using a token, you can have a sentence, like
“The result is {TOKEN}”. When using Tokens, multiple CalculationControllers can have their tokens in the same label.
You define the token and assign it to the LabelToken property. Make sure the Label has that token embedded in its Text
property.

Each time the server side code runs, it will update the control in ShowValueControlID based on the rules of the
AutoShowValue property. If it updates the control, the page will show the value as it’s loaded.

If there are any errors in the calculation, it will assign the text in InvalidValueLabel to the control, whether a Label or
numeric TextBox. For example, you might set InvalidValueLabel to “0.00” or “-.--”. If InvalidValueLabel is blank, the
control will be blanked. Additionally, you can change the style sheet class name if you assign a new class to
InvalidValueCssClass.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 96 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the Result in Validators and Conditions
The following Validators and their Conditions can evaluate CalculationControllers by setting their ControlIDToEvaluate
property to the ID of the CalculationController: RequiredTextValidator, CompareToValueValidator,
CompareTwoFieldsValidator, RangeValidator, and DifferenceValidator. The RequiredTextValidator detects errors because
the CalculationController returns an empty string when there is an error.

Validators can update each time the calculation runs or only on submit by using the ValidateOnCalc property.

Conditions appear throughout DES. With a CalculationController, your Enabler properties can enable controls based on a
calculation. The MultiConditionValidator, CountTrueConditionsValidator, FieldStateController.Condition, and all other
cases can evaluate CalculationControllers too.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 97 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the Result in Your Server-Side Code
You can access the result of the calculation with the Value property. It is a System.Double value. Always check the
IsValid property first. If IsValid is false, the calculation failed and Value is 0.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 98 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Running CalculationControllers On Demand
DES provides methods and functions to run calculations on demand, both on the client and server side. On the server side,
use the Value property. See “Calculating The Value Properties”. On the client-side, use these functions. They are available
whenever you use the CalculationController:

 DES_CalcAll() – Runs all CalculationControllers on the page. They will update their controls to display.

DES_CalcAll();

 DES_CalcOne(ID) – Runs the calculation for the CalculationController supplied by its ID and returns the result. It
does not update the value on the control to display.

The ID parameter must be the ClientID of the CalculationController.

It returns a decimal value or NaN. NaN is a special JavaScript symbol representing “not a number”. Here it means
the calculation failed. To test for NaN, JavaScript provides the function IsNaN(value). It returns true if the
value passed in is NaN.

var vResult = DES_CalcOne('CalculationController1');
if (!IsNaN(vResult)) // it’s a valid decimal number
 // use vResult

If you need to know how to add your JavaScript to the page, see “Adding Your JavaScript to the Page”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 99 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding the CalculationController Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Start by setting up all the Controls involved. Make sure the TextBoxes are IntegerTextBox, DecimalTextBox,
CurrencyTextBox, or PercentTextBox. If you are using any conditional logic, be sure that controls that determine that
logic are present too, like CheckBoxes and DropDownLists.

3. Add the CalculationController control to the page. Its location does not matter as it contributes no HTML to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the CalculationController control from the Toolbox onto your web form. It will look like this:

Text Entry Users

Add the control (inside the <form> area):

<des:CalculationController id="[YourControlID]" runat="server" >
</des:CalculationController>

Programmatically Creating the Control

 Identify the control which you will add the CalculationController control to its Controls collection. Like all
ASP.NET controls, the CalculationController control can be added to any control that supports child controls, like
Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

 Create an instance of the CalculationController control class. The constructor takes no parameters.

 Assign the ID property.

 Add the CalculationController control to the Controls collection.

In this example, the CalculationController control is created with an ID of “CalculationController1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.CalculationController vCalc =
 new PeterBlum.DES.CalculationController();
vCalc.ID = "CalculationController1";
PlaceHolder1.Controls.Add(vCalc);

[VB]

Dim vCalc As PeterBlum.DES.CalculationController = _
 New PeterBlum.DES.CalculationController()
vCalc.ID = "CalculationController1"
PlaceHolder1.Controls.Add(vCalc)

4. Write down your expression. For example, “(TextBox1 + TextBox2) * 25”. This will guide you as you build it in the
CalculationController.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 100 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

5. Define the expression in the Expression property. That property allows a list of CalcItem objects.
ParenthesisCalcItem objects have their own list in their Expression property. ConditionCalcItem objects
have two child lists, for ExpressionWhenTrue and ExpressionWhenFalse. So you may end up building a tree of
CalcItem objects. Here are some examples:

Example 1

Expression: (TextBox1 + TextBox2) * 25

ParenthesisCalcItem with its Expression property containing:

 NumericTextBoxCalcItem for TextBox1

 NumericTextBoxCalcItem for TextBox2 with Operator = Add

ConstantCalcItem with Constant = 25 and Operator = Multiply

Example 2

Expression: TextBox1 + TextBox2 - If (CheckBox1 is checked) THEN TextBox3 ELSE 0

NumericTextBoxCalcItem for TextBox1

NumericTextBoxCalcItem for TextBox2 with Operator = Add

ConditionCalcItem with the Condition = CheckStateCondition on CheckBox1 and Operator =
Subtract

 ExpressionWhenTrue:

 NumericTextBoxCalcItem for TextBox3

 ExpressionWhenFalse:

 ConstantCalcItem with Constant = 0

Example 3

The DES Ordering page uses several CalculationControllers that evaluate radiobuttons, checkboxes, and an
IntegerTextBox to determine the subtotal of your order and the per-unit value. It uses NumericTextBoxCalcItem,
CheckStateCalcItem, ParenthesisCalcItem, and ConditionCalcItem objects.

See the live page at http://www.peterblum.com/des/order.aspx. To see its source code, view
http://www.peterblum.com/des/orderpagemarkup.aspx.

http://www.peterblum.com/des/order.aspx�
http://www.peterblum.com/des/orderpagemarkup.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 101 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor for the Expression property provides a window where you can select CalcItem objects and
establish their properties.

 The Add button contains a list of: NumericTextBoxCalcItem, ConstantCalcItem,
ConditionCalcItem, ParenthesisCalcItem, and CalcControllerCalcItem. Select one to add to
the end of the current list.

 Establish the properties in the Properties grid.

 When you see the following properties, they open to their own copy of the same Properties Editor: Expression,
ExpressionWhenTrue, and ExpressionWhenFalse.

 Click OK.

ASP.NET Declarative Syntax for the Expression Property

You add the Expression as child of the <Expression> tag.

The following example represents expression (DecimalTextBox1 + DecimalTextBox2) * 25:

<des:CalculationController id="CalculationController1" runat="server">
<Expression>
 <des:ParenthesisCalcItem>
 <Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1">
 </des:NumericTextBoxCalcItem>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox2">
 </des:NumericTextBoxCalcItem>
 </Expression>
 </des:ParenthesisCalcItem>
 <des:ConstantCalcItem Constant="25" Operator="Multiply">
 </des:ConstantCalcItem>
</Expression>
</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 102 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

The following example represents expression DecimalTextBox1 + DecimalTextBox2 - If (CheckBox1 is checked)
THEN DecimalTextBox3 ELSE 0:

<des:CalculationController id="CalculationController2" runat="server">
<Expression>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1">
 </des:NumericTextBoxCalcItem>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox2">
 </des:NumericTextBoxCalcItem>
 <des:ConditionCalcItem Operator="Subtract">

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" >
 </des:CheckStateCondition>
 </ConditionContainer>

 <ExpressionWhenTrue>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1">
 </des:NumericTextBoxCalcItem>
 </ExpressionWhenTrue>

 <ExpressionWhenFalse>
 <des:ConstantCalcItem Constant="0">
 </des:ConstantCalcItem>
 </ExpressionWhenFalse>

 </des:ConditionCalcItem>
</Expression>
</des:CalculationController>

Notice that the ConditionCalcItem.Condition property name never appears in the attributes of the
<des:ConditionCalcItem> tag. (It will be added when using the Properties Editor but it’s completely
meaningless.) Instead, the <ConditionContainer> tag is a child of the ConditionCalcItem control tag. That tag has
no attributes. The child to <ConditionContainer> defines the class and all properties of the Condition:

<des:classname[all properties] />

 des:classname – Use any Condition class for the classname. If you create your own classes, you must declare the
namespace using the <% @REGISTER %> tag at the top of the page.

 [all properties] – Enter the properties into the tag the same way you do for any other control.

Programmatically Adding To Expression

Here are the steps to set the Expression.

 Create an instance of the desired CalcItem. Here are the available constructors shown with property names in the
parameters.

NumericTextBoxCalcItem()
NumericTextBoxCalcItem(Operator)
NumericTextBoxCalcItem(Operator, TextBoxControlID)
NumericTextBoxCalcItem(Operator, TextBoxInstance)

ConstantCalcItem()
ConstantCalcItem(Operator)
ConstantCalcItem(Operator, Constant)

ListConstantsCalcItem()
ListConstantsCalcItem(Operator)
ListConstantsCalcItem(Operator, ListControlID)
ListConstantsCalcItem(Operator, ListInstance)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 103 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

CheckStateCalcItem()
CheckStateCalcItem(Operator)
CheckStateCalcItem(Operator, CheckStateControlID, ValueWhenChecked)
CheckStateCalcItem(Operator, CheckStateInstance, ValueWhenChecked)
CheckStateCalcItem(Operator, CheckStateControlID,
 ValueWhenChecked, ValueWhenUnchecked)
CheckStateCalcItem(Operator, CheckStateInstance,
 ValueWhenChecked, ValueWhenUnchecked)
CheckStateCalcItem(Operator, CheckStateControlID, Index, ValueWhenChecked)
CheckStateCalcItem(Operator, CheckStateInstance, Index, ValueWhenChecked)
CheckStateCalcItem(Operator, CheckStateControlID, Index,
 ValueWhenChecked, ValueWhenUnchecked)
CheckStateCalcItem(Operator, CheckStateInstance, Index,
 ValueWhenChecked, ValueWhenUnchecked)

ParenthesisCalcItem()
ParenthesisCalcItem(Operator)

ConditionCalcItem()
ConditionCalcItem(Operator)
ConditionCalcItem(Operator, Condition)

CalcControllerCalcItem()
CalcControllerCalcItem(Operator)
CalcControllerCalcItem(Operator, ControlID)
CalcControllerCalcItem(Operator, ControlInstance)

 Assign property values. For ParenthesisCalcItem, fill in its Expression property using these same steps. For
ConditionCalcItem, fill in its ExpressionWhenTrue and ExpressionWhenFalse properties using these same
steps.

 Assign the CalcItem object to the Expression property.

The following example represents expression (DecimalTextBox1 + DecimalTextBox2) * 25:

[C#]

PeterBlum.DES.ParenthesisCalcItem vSubExp1 =
 new PeterBlum.DES.ParenthesisCalcItem();
// DecimalTextBox1 inside the parenthesis
PeterBlum.DES.NumericTextBoxCalcItem vDTB1 =
 new PeterBlum.DES.NumericTextBoxCalcItem(
 PeterBlum.DES.CalcOperator.Add, DecimalTextBox1);
vSubExp1.Expression.Add(vDTB1);
// DecimalTextBox2 inside the parenthesis
PeterBlum.DES.NumericTextBoxCalcItem vDTB2 =
 new PeterBlum.DES.NumericTextBoxCalcItem(
 PeterBlum.DES.CalcOperator.Add, DecimalTextBox2);
vSubExp1.Expression.Add(vDTB2);
CalculationController1.Expression.Add(vSubExp1);
// Constant * 25
PeterBlum.DES.ConstantCalcItem vConst =
 new PeterBlum.DES.ConstantCalcItem(
 PeterBlum.DES.CalcOperator.Multiply, 25.0);
CalculationController1.Expression.Add(vConst);

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 104 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

[VB]

Dim vSubExp1 As PeterBlum.DES.ParenthesisCalcItem = _
 New PeterBlum.DES.ParenthesisCalcItem()
' DecimalTextBox1 inside the parenthesis
Dim vDTB1 As PeterBlum.DES.NumericTextBoxCalcItem = _
 New PeterBlum.DES.NumericTextBoxCalcItem(_
 PeterBlum.DES.CalcOperator.Add, DecimalTextBox1)
vSubExp1.Expression.Add(vDTB1)
' DecimalTextBox2 inside the parenthesis
Dim vDTB2 As PeterBlum.DES.NumericTextBoxCalcItem = _
 New PeterBlum.DES.NumericTextBoxCalcItem(
 PeterBlum.DES.CalcOperator.Add, DecimalTextBox2)
vSubExp1.Expression.Add(vDTB2)
CalculationController1.Expression.Add(vSubExp1)
' Constant * 25
Dim vConst As PeterBlum.DES.ConstantCalcItem = _
 New PeterBlum.DES.ConstantCalcItem(_
 PeterBlum.DES.CalcOperator.Multiply, 25.0)
CalculationController1.Expression.Add(vConst)

6. If you want to display the value, set the ID to the Label or numeric textbox in ShowValueControlID or
programmatically assign the object to ShowValueInstance. Use the InvalidValueLabel and InvalidValueCssClass
properties to customize the appearance of that control when there is a calculation error.

7. If you want to validate the value, add the appropriate Validator control. You can choose from RequiredTextValidator,
CompareToValueValidator, CompareTwoFieldsValidator, RangeValidator and DifferenceValidator. The
RequiredTextValidator can report when there was a calculation error. See the Validation User’s Guide for details on
the Validators.

Then set the ValidateOnCalc property to true.

8. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoCalc.aspx.

http://www.peterblum.com/DES/DemoCalc.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 105 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties on CalculationController
Click on any of these topics to jump to them:

 Calculating The Value Properties

 Showing The Value Properties

 When to Use the Control Properties

 Behavior Properties

 Properties on CalcItem Classes

 Properties Common To All CalcItem Classes

 Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class

 Properties for the PeterBlum.DES.ListConstantsCalcItem Class

 Properties for the PeterBlum.DES.CheckStateCalcItem Class

 Properties for the PeterBlum.DES.ConstantCalcItem Class

 Properties for the PeterBlum.DES.ParenthesisCalcItem Class

 Properties for the PeterBlum.DES.ConditionCalcItem Class

 Properties for the PeterBlum.DES.CalcControllerCalcItem Class

 Adding Custom Code to a CalcItem

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 106 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Calculating The Value Properties
The Properties Editor shows these properties in the “Calculation” category.

 Expression (PeterBlum.DES.CalcList) – A list of CalcItem objects that define the calculation expression. See “Creating
the Expression” and step 5 of “Adding the CalculationController Control”.

 RoundMode (enum PeterBlum.DES.CalcRoundMode) – Determines if the result of the calculation is rounded or
truncated. It can round based on the number of decimal places defined in DecimalPlaces. When DecimalPlaces is Auto
and ShowValueControlID is assigned to a numeric TextBox, it uses the number of decimal places determined by the
numeric TextBox. For example, an IntegerTextBox uses 0 decimal places, which means it rounds to a whole number. For
all other situations, when DecimalPlaces is Auto, there is no rounding or truncating.

The enumerated type PeterBlum.DES.CalcRoundMode has these values:

o Truncate – Truncate after the number of decimal digits specified by DecimalPlaces.

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.99 is 2.9; 3 is 3.

o Currency – Applies “Banker rules” where it rounds up after the digit after the number of decimal digits
specified by DecimalDigits is 5 or higher but only when it will round up to an even number. All other cases
round down (truncate). This is how the .net System.Math.Round() method works. On the server side, it in
fact uses System.Math.Round().

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.99 is 3.0 (because it rounds the 9 up to 10), 2.89 is 2.8
(because 8 is already an even number.)

RoundMode defaults to Currency.

o Point5 – Round up when the digit after the number of decimal digits specified by DecimalDigits is 5 or
higher. All other cases round down (truncate). When the value is a negative number, rounding “up” makes a
larger negative number.

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.99 is 3.0; 2.95 is 3.0; 2.94 is 2.9; -2.99 is -3.0; -2.94 is -2.9.

o Ceiling – Round up when the digits after the number of decimal digits specified by DecimalDigits is not
zero. When the value is a negative number, it makes a smaller negative number. On the server-side, it uses
System.Math.Ceiling().

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.900000 is 2.9; 2.99 is 3.0; 2.90001 is 3.0; -2.900 is -2.9; -2.99
is -2.9.

o NextWhole – Round up when the digits after the number of decimal digits specified by DecimalDigits is not
zero. When the value is a negative number, it makes a larger negative number. It is almost identical to
Ceiling except it makes negative numbers larger.

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.900000 is 2.9; 2.99 is 3.0; 2.90001 is 3.0; -2.900 is -2.9; -2.99
is -3.0.

 Value (System.Double) – Gets the calculated value based on the current values in the controls associated with this
expression. Always test IsValid is true first. If IsValid is false, this returns 0.0.

The first time this method is called, its value is cached. If you change any of the values in TextBoxes, call
Recalculate() before using Value again. Recalculate() takes no parameters and returns no value. For
example:

CalculationController1.Recalculate()

 ValueText (string) – Converts Value into a string. If IsValid is false, it returns "". This is used by Validators on the
server side.

 IsValid (boolean) – When true, the calculated value is valid and reflected in Value. When false, the calculation had
an error and Value is 0.0.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 107 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Showing The Value Properties
The Properties Editor shows these properties in the “Show Value” category.

 ShowValueControlID (string) – The ID to an IntegerTextBox, DecimalTextBox, CurrencyTextBox, PercentTextBox,
Label, or LocalizableLabel that will display the result of the calculation.

This ID must be in the same or an ancestor naming container. If it is in another naming container, use
ShowValueInstance.

If this and ShowValueInstance are unassigned, the calculation is not displayed.

Formatting, such as decimal character, currency symbol, and thousands separator are determined by
PeterBlum.DES.Globals.Page.CultureInfo and other properties in this section.

It defaults to "".

 ShowValueInstance (System.Web.UI.Control) – A reference to an IntegerTextBox, DecimalTextBox,
CurrencyTextBox, PercentTextBox, Label, or LocalizableLabel that will display the result of the calculation. It is an
alternative to ShowValueControlID that you must assign programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the control object that will be displayed, it is better to
assign it here than assign its ID to the ShowValueControlID property because DES operates faster using
ShowValueInstance.

 InvalidValueLabel (string) – When there is an error while calculating, this text is assigned to the control displaying the
value.

If you assign this to a numeric textbox that has a DataTypeCheckValidator assigned, considering adding an Enabler to
the DataTypeCheckValidator that disables it when this value is present. For the Enabler, use a
CompareToValueCondition with Operator of NotEqual and ValueToCompare with the same text as this property.

It defaults to "".

 InvalidValueCssClass (string) – When there is an error while calculating, you can change the appearance of the control
displaying the value by assigning a style sheet class name here.

It is not used when "".

It defaults to "".

 DecimalPlaces (enum PeterBlum.DES.CalcDecimalPlaces) – The number of decimal places to round or truncate the
value. When the control to display is assigned to a Label control, this also determines the overall format of the value
written into the Label.

The enumerated type PeterBlum.DES.CalcDecimalPlaces has these values:

o Auto – Depends on the type of control to display:

 IntegerTextBox – 0 decimal places.

 DecimalTextBox – Use the DecimalTextBox.MaxDecimalPlaces property. If MaxDecimalPlaces is 0,
show as many decimal places as needed.

 CurrencyTextBox – Use the number of decimal places for Currency defined in
PeterBlum.DES.Globals.Page.CultureInfo.

 Labels - Show as many decimal places as needed. Do not round or truncate. When you want to show a
currency, always use Currency.

It defaults to Auto.

o Integer – 0 decimal places

o Decimal1 – 1 decimal place

o Decimal2 – 2 decimal places

o Decimal3 – 3 decimal places

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 108 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

o Decimal4 – 4 decimal places

o Decimal5 – 5 decimal places

o Decimal6 – 6 decimal places

o Decimal7 – 7 decimal places

o Decimal8 – 8 decimal places

o Decimal9 – 9 decimal places

o Decimal10 – 10 decimal places

o Currency - Use the number of decimal places for Currency defined in
PeterBlum.DES.Globals.Page.CultureInfo.

 LabelFormatThousandsSep (Boolean) – When the control to display is a Label and this is true, thousands separators
are shown according to the rules of PeterBlum.DES.Globals.Page.CultureInfo. Numeric TextBoxes have their own
properties to show thousands separators. It defaults to false.

 LabelFormatCurrencySymbol (Boolean) – When the control to display is a Label and this is true, the currency
symbol are shown according to the rules of PeterBlum.DES.Globals.Page.CultureInfo. Numeric TextBoxes have their
own properties to show the currency symbol. It defaults to false. This setting requires DecimalPlaces = Currency.

 LabelToken (string) – When the control to display is a label, the entire text or just a token within that text can be
replaced. When this property is assigned, it is a token to be replaced. Otherwise, the entire text is replaced.

This allows the value to be inserted into a larger string, like a sentence. It also allows multiple CalculationControllers to
update a common Label. For example, the Label.Text is “The result is {CALC}” and LabelToken is "{CALC}".

To use it, add a token such as "{CALC}" or "{0}" into the Label's Text where the calculation belongs. There should only
be one instance of this token per Label.

When it is "", the entire text of the Label is replaced.

When assigned, this exact text (case sensitive) is replaced with the calculation value where it appears in the Label's
current text. You should only define one token in your Label's text.

It defaults to "".

 AutoShowValue (enum PeterBlum.DES.AutoShowValueMode) – Determines if the control to display the value is
assigned the result of the calculation on the server side. When it is used, the calculation will occur during the control's
PreRender stage using the current values in the textboxes. Often users leave it off when the page is first created but have
it calculated on post back because it now reflects the user's data.

You can always call the CalculationController.ShowValue() method to calculate and update the control
with the value as an alternative to using this property.

The enumerated type PeterBlum.DES.AutoShowValueMode has these values:

o Off - It never displays the calculation result in PreRender. You can still use ShowValue() to set it.

o PostBack - Display on postback. This is the default.

o Always - Display when the page is first created and on postback.

 ShowValue() – This method will calculate and display the value in the control identified by ShowValueControlID or
ShowValueInstance. It is an alternative to using AutoShowValue. Usually you call it after setting valid values in your
textboxes.

ShowValue() takes no parameters and returns no result. Here is an example on CalculationController1.

CalculationController1.ShowValue()

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 109 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

When to Use the Control Properties
The Properties Editor shows these properties in the “When To Use” category.

 Visible (Boolean) – Determines if the control is used or not. When true, it is used. When false, it is not. It defaults
to true.

 RunOnlyOnDemand (Boolean) – Indicates that this calculation cannot run on the client-side unless you call the
DES_CalcOnDemand() javascript function. You generally setup the onchange event to textboxes that will invoke this
function.

When false, the calculation runs automatically.

When true, the calculation only runs if you call DES_CalcOnDemand(ID). The function parameter is the ClientID
value for the CalculationController.

It defaults to false.

For example, the field showing the calculation result is an IntegerTextBox where you don’t want it to be updated after
the user edits that textbox. You could write a javascript function that knows the state of editing on the IntegerTextBox
and calls DES_CalcOnDemand() when it has not been edited. Attach the onchange event of any textboxes that normally
invoke this calculation to call your function.

<script type='text/javascript' >
var gResultWasEdited = false;
function UpdateResult(pSourceField)
{
 if (!gResultWasEdited)
 DES_CalcOnDemand("<% =CalculationController1.ClientID %>");
}
</script>

In Page_Load(), setup the onchange events using the
PeterBlum.DES.Globals.Page.AttachCodeToEvent() function (which is required when using the DES
numeric textboxes).

PeterBlum.DES.Globals.Page.AttachCodeToEvent(
 EnterValueTextBox, "onchange", "UpdateResult(this);", false);

PeterBlum.DES.Globals.Page.AttachCodeToEvent(
 ResultTextBox, "onchange", "gResultWasEdited = true", false);

 Enabler (PeterBlum.DES.BaseCondition) – There are times when a CalculationController should be disabled. For
example, don’t calculate because a textbox in the calculation is invisible. These rules are formed by Conditions classes
with the Enabler property on each CalculationController. By default, the Enabler property is set to “None”, where it
doesn’t disable the control. You can set it to any Condition, including those you may create programmatically.

Consider these issues when using the Enabler:

o Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to
false when using it in an Enabler.

o Do not use this to detect a control whose Visible property is set to false. Such a control does not create
HTML for the client-side to use. Instead, set the Enabled property to false when the control is invisible.

CONTINUED ON THE NEXT PAGE

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 110 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor offers this window to select a Condition and to edit its properties.

o Select the Condition from the DropDownList.

o Establish the properties in the Properties grid.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

o Click OK.

ASP.NET Declarative Syntax for the Enabler Property

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the CalculationController with the Enabler set to the CheckStateCondition.

<des:CalculationController id="CalculationController1" runat="server" >

 <EnablerContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1"
 EvaluateOnClickOrChange="false" >
 </des:CheckStateCondition>
 </EnablerContainer>

</des:CalculationController >

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des:CalculationController> tag. (It
will be added when using the Properties Editor but it’s completely meaningless.) Instead, the <EnablerContainer>
tag is a child of the CalculationController tag. That tag never has any attributes. The child to <EnablerContainer>
defines the class and all properties of the Condition:

<des:classname [all properties] />

o des:classname – Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] – Enter the properties into the tag the same way you do for any other control.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 111 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically Setting The Enabler

Here are the steps to set the Enabler.

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each
demands an “owner” in the first parameter. That value must be the FieldStateController object.

2. Assign property values.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.

3. Assign the Condition object to the Enabler property.

In this example, add the CheckStateCondition, which is checking CheckBox1, to CalculationController1.

[C#]

PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.EvaluateOnClickOrChange = false;
CalculationController1.Enabler = vCond;

[VB]

Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.EvaluateOnClickOrChange = False
CalculationController1.Enabler = vCond

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 112 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

 InAJAXUpdate (Boolean) – When the page uses AJAX callbacks to add, update, or remove this control, set this to
true. It defaults to false.

In addition, if any of these properties identify a control that participates in the AJAX callback, set this to true:

o ShowValueControlID and ShowValueInstance

o Any control identified inside of the Expression property, including textboxes, lists, and other
CalculationControllers.

o Enabler. Look at the ControlIDToEvaluate and SecondControlIDToEvaluate.

o ExtraControlsToRunThisAction.

Note: This is only needed for non-DES controls. DES controls will tell the FieldStateController if their own
IsAJAXUpdate property is true.

See “Using These Controls with AJAX” in the General Features Guide.

 ValidateOnCalc (boolean) – When true, client-side validation is applied to any Validators evaluating to this control
after a numeric TextBox involved in this Expression is edited. When false, Validators only update when the page is
submitted. It defaults to false.

 ExtraControlsToRunThisAction (PeterBlum.DES.ControlConnectionCollection) – Identifies additional controls and
elements on the page that run this CalculationController when clicked or changed.

The Expression already identifies controls through its NumericTextBoxCalcItem, ConditionCalcItem, and
ListConstantsCalcItem objects so this is rarely needed.

This property is a collection of PeterBlum.DES.ControlConnection objects. You can assign the control’s ID to
the ControlConnection.ControlID property or a reference to the control in the ControlConnection.ControlInstance
property. When using the ControlID property, the control must be in the same or an ancestor naming container. If it is in
another naming container, use ControlInstance.

Here are some considerations:

o Be sure that the control assigned to this collection has the runat=server property.

ASP.NET Declarative Syntax for the ExtraControlsToRunThisAction Property

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET text is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:CalculationController id="CalcController1" runat="server">

 <ExtraControlsToRunThisAction>
 <des:ControlConnection ControlID="TextBox1" />
 <des:ControlConnection ControlID="Label1" />
 </ExtraControlsToRunThisAction>

</des:CalculationController>

Programmatically adding to the ExtraControlsToRunThisAction Property

Use the ExtraControlsToRunThisAction.Add() method to add an entry. This overloaded method takes one
parameter. Choose from the following:

 A reference to the control itself. This is the preferred form.

 A string giving the ID of the control. Do not use this when the control is not in the same naming container.

 An instance of the class PeterBlum.DES.ControlConnection.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 113 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

This example shows how to update an existing PeterBlum.DES.ControlConnection and add a new entry.
Suppose the ASP.NET code looks like the text above and the Label1 control is not in the same or ancestor naming
container. Also suppose the control referenced in the property TextBox2 control must be added.

[C#]

uses PeterBlum.DES;
...
ControlConnection vConnection = (ControlConnection)
 CalcController1.ExtraControlsToRunThisAction[1];
vConnection.ControlInstance = Label1;
// add TextBox2. It can be either a control reference or its ID
CalcController1.ExtraControlsToRunThisAction.Add(TextBox2);

[VB]

Imports PeterBlum.DES
...
Dim vConnection As ControlConnection = _
 CType(CalcController1.ExtraControlsToRunThisAction(1), ControlConnection)
vConnection.ControlInstance = Label1
' add TextBox2. It can be either a control reference or its ID
CalcController1.ExtraControlsToRunThisAction.Add(TextBox2)

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 114 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties on CalcItem Classes
The CalcItem classes are used to build the expressions. See “Creating the Expression”. This section describes the properties
of each class.

Click on any of these topics to jump to them:

 Properties Common To All CalcItem Classes

 Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class

 Properties for the PeterBlum.DES.ListConstantsCalcItem Class

 Properties for the PeterBlum.DES.CheckStateCalcItem Class

 Properties for the PeterBlum.DES.ConstantCalcItem Class

 Properties for the PeterBlum.DES.ParenthesisCalcItem Class

 Properties for the PeterBlum.DES.ConditionCalcItem Class

 Properties for the PeterBlum.DES.CalcControllerCalcItem Class

 Adding Custom Code to a CalcItem

 The Client-Side Function and the CustomCalcFunctionName Property

 The Server Side Event Handler and CustomCalculation Property

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 115 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties Common To All CalcItem Classes
 Operator (enum PeterBlum.DES.CalcOperator) – Determines if this value is added, subtracted, multiplied, or divided

against values previously added to the expression. If there are no previous values, it calculates against 0. If this CalcItem
object is the first in an expression, it is recommended that you leave this set to Add.

The enumerated type PeterBlum.DES.CalcOperator has these values:

o Add – This is the default.

o Subtract

o Multiply

o Divide

 Enabled (Boolean) – Determines if this CalcItem is used in the calculation. When true, it is used. It defaults to true.

Often you use this when you define an expression on the ASP.NET text definition and need to customize it
programmatically. When you do so, you usually also assign the ID property so you can search for this CalcItem object.

 ID (string) – An optional ID used to allow a search for this element throughout the Expression or to let their custom
functions identify the CalcItem object. (See “Adding Custom Code to a CalcItem”.)

The user can leave it blank if not programmatically searching for this CalcItem object. When assigned, it should be
unique amongst all CalcItems objects in this Expression. When "", it is not used. It defaults to "".

Use the CalculationController.FindByID() method to search for this CalcItem by ID. FindByID() takes
one parameter, the ID to locate (as a string). It returns the CalcItem object as the class
PeterBlum.DES.BaseCalcItem or null/nothing if no matching CalcItem is found. Usually you will typecast
the result to the desired type. Here is an example that locates a NumericTextBoxCalcItem by the ID of “Rate1” and sets
its TextBoxInstance property to the DecimalTextBox in the field DecimalTextBox1.

[C#]

PeterBlum.DES.BaseCalcItem vItem = CalculationController1.FindByID("Rate1");
if (vItem != null)
 ((PeterBlum.DES.NumericTextBoxCalcItem)vItem).TextBoxInstance =
 DecimalTextBox1;

[VB]

Dim vItem As PeterBlum.DES.BaseCalcItem = _
 CalculationController1.FindByID("Rate1")
If Not vItem Is Nothing Then
 CType(vItem, PeterBlum.DES.NumericTextBoxCalcItem).TextBoxInstance = _
 DecimalTextBox1
End If

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 116 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class
The PeterBlum.DES.NumericTextBoxCalcItem class retrieves its value from any of DES’s numeric TextBoxes –
IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox. It sets up the CalculationController to
automatically calculate each time the textbox is changed and focus leaves the control.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 TextBoxControlID (string) – The ID to an IntegerTextBox, DecimalTextBox, CurrencyTextBox, or PercentTextBox.
This ID must be in the same or an ancestor naming container. If it is in another naming container, use TextBoxInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

 TextBoxInstance (PeterBlum.DES.BaseNumberTextBox) – A reference to an IntegerTextBox, DecimalTextBox,
CurrencyTextBox, or PercentTextBox. It is an alternative to TextBoxControlID that you must assign programmatically.
It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the textbox control object, it is better to assign it here
than assign its ID to the TextBoxControlID property because DES operates faster using TextBoxInstance.

 InvalidIsZero (Boolean) – Determines what to do when an invalid value is in the textbox.

When true, an invalid value becomes 0 in the calculation and the calculation continues.

When false, it stops the calculation and reports an error.

It defaults to true.

 BlankIsZero (Boolean) – Determines what to do when the textbox is empty.

When true, a blank textbox uses the value 0 in the calculation and the calculation continues.

When false, it stops the calculation and reports an error.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 117 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.ListConstantsCalcItem Class
The PeterBlum.DES.ListConstantsCalcItem class associates the items in a ListBox or DropDownList with
constants. You can define constants for each item or for a range. You can also report an error when a specific item is selected.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 ListControlID (string) – The ID to a ListBox, DropDownList, or System.Web.UI.HtmlControls.HtmlSelect control.
This ID must be in the same or an ancestor naming container. If it is in another naming container, use ListInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

 ListInstance (System.Web.UI.Control) – A reference to a ListBox, DropDownList, or
System.Web.UI.HtmlControls.HtmlSelect control. It is an alternative to ListControlID that you must assign
programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the list control object, it is better to assign it here than
assign its ID to the ListControlID property because DES operates faster using ListInstance.

 ConstantWhenNoMatch (double) – When the SelectedIndex of the list control does not find a match in the
ConstantsForSelectedIndexes property, this value is used. It defaults to 0.

 ErrorWhenNoMatch (boolean) - When the SelectedIndex of the list control does not find a match in the
ConstantsForSelectedIndexes property, set this to true to report an error to the CalculationController. When false,
the value of ConstantWhenNoMatch is used. It defaults to false.

Reporting an error stops the calculation from continuing.

 ConstantsForSelectedIndexes (PeterBlum.DES.ConstantsForSelectedIndexes) – A list that defines how each item in
the list control maps to a constant. This list should have at least one item.

You add PeterBlum.DES.ConstantForSelectedIndex objects to this list. The ConstantForSelectedIndex
class has these properties:

o StartIndex (integer) – The index of the item to map to the constant. If you are using a range, this is the lower
index. It can be -1 to the highest position in the list control. -1 is used for no selection. 0 is for the first item
shown in the list. It defaults to -1.

o EndIndex (integer) – When using a range, assign this to the upper index. Leave it at -1 if not using a range. It
defaults to -1.

o Constant (double) – The numeric value that is used when this object matches the SelectedIndex of the list. It
defaults to 0.

o Error (Boolean) – When true, report an error to the CalculationController instead of using the Constant
property. When false, use the Constant property. It defaults to false.

Reporting an error stops the calculation from continuing.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 118 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor for the ConstantsForSelectedIndexes property provides a window where you can select CalcItem
objects and establish their properties.

 The Add button adds a new item. The Remove button removes the selected item.

 Establish the properties in the Properties grid.

 Click OK.

ASP.NET Declarative Syntax for the ConstantsForSelectedIndexes Property

You add the ConstantsForSelectedIndexes as child of the <ConstantsForSelectedIndexes> tag.

The following example creates three ConstantForSelectedIndex objects that map to items in ListBox1:

<des:CalculationController id=CalculationController1 runat="server">
<Expression>
 <des:ListConstantsCalcItem ListControlID="ListBox1" >
 <ConstantsForSelectedIndexes>
 <des:ConstantForSelectedIndex StartIndex="0" Constant="5">
 </des:ConstantForSelectedIndex>
 <des:ConstantForSelectedIndex StartIndex="1" EndIndex="2"
 Constant="10" >
 </des:ConstantForSelectedIndex>
 <des:ConstantForSelectedIndex StartIndex="3" Error="True">
 </des:ConstantForSelectedIndex>
 </ConstantsForSelectedIndexes>
 </des:ListConstantsCalcItem>
</Expression>
</des:CalculationController>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 119 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically Adding to the ConstantsForSelectedIndexes Property

Here are the steps to add PeterBlum.DES.ConstantForSelectedIndex objects to the
ConstantsForSelectedIndexes Property.

1. Create an instance of the PeterBlum.DES.ConstantForSelectedIndex class. Here are the available
constructors. Their parameters match to properties described in the class definition, above.

ConstantForSelectedIndex()
ConstantForSelectedIndex(Constant, StartIndex)
ConstantForSelectedIndex(Constant, StartIndex, EndIndex)
ConstantForSelectedIndex(Error, StartIndex)
ConstantForSelectedIndex(Error, StartIndex, EndIndex)

2. Assign property values.

3. Add the object to the ConstantsForSelectedIndexes property.

This example creates the three ConstantForSelectedIndex objects shown in the above HTML text. The
ListConstantsCalcItem is assigned the ID of “ConstsForListBox1” elsewhere.

[C#]

PeterBlum.DES.ListConstantsCalcItem vCalcItem =
 (PeterBlum.DES.ListConstantsCalcItem) // typecast
 CalculationController1.FindByID("ConstsForListBox1");
// const=5 startindex=0
PeterBlum.DES.ConstantForSelectedIndex vCFSI =
 new PeterBlum.DES.ConstantForSelectedIndex(5.0, 0);
vCalcItem.ConstantsForSelectedIndexes.Add(vCalcItem);
// const=10, startindex=1,endindex=2
vCFSI = new PeterBlum.DES.ConstantForSelectedIndex(10.0, 1, 2);
vCalcItem.ConstantsForSelectedIndexes.Add(vCalcItem);
// Error=true, startindex=3
vCFSI = new PeterBlum.DES.ConstantForSelectedIndex(true, 3);
vCalcItem.ConstantsForSelectedIndexes.Add(vCalcItem);

[VB]

Dim vCalcItem As PeterBlum.DES.ListConstantsCalcItem = _
 CType(CalculationController1.FindByID("ConstsForListBox1"),_
 PeterBlum.DES.ListConstantsCalcItem)
' const=5 startindex=0
Dim vCFSI As PeterBlum.DES.ConstantForSelectedIndex =_
 New PeterBlum.DES.ConstantForSelectedIndex(5.0, 0)
vCalcItem.ConstantsForSelectedIndexes.Add(vCalcItem)
' const=10, startindex=1,endindex=2
vCFSI = New PeterBlum.DES.ConstantForSelectedIndex(10.0, 1, 2)
vCalcItem.ConstantsForSelectedIndexes.Add(vCalcItem)
' Error=true, startindex=3
vCFSI = New PeterBlum.DES.ConstantForSelectedIndex(true, 3)
vCalcItem.ConstantsForSelectedIndexes.Add(vCalcItem)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 120 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.CheckStateCalcItem Class
The PeterBlum.DES.CheckStateCalcItem class determines its value from one of two constants that are selected
based on the check state of a CheckBox or RadioButton, including those in CheckBoxLists and RadioButtonLists.

One common usage is to add a series of checkboxes that are checked. Since this control also returns a value for the
unchecked state, usually you use ValueWhenUnchecked = 0 when adding or subtracting. You use ValueWhenUnchecked = 1
when multiplying or dividing.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 CheckStateControlID (string) – The ID to a CheckBox, RadioButton, CheckBoxList, or RadioButtonList. This ID must
be in the same or an ancestor naming container. If it is in another naming container, use CheckStateInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

When assigned to a CheckBoxList or RadioButtonList, set the Index property to the button within the list.

 CheckStateInstance (Control) – A reference to a CheckBox, RadioButton, CheckBoxList, or RadioButtonList. It is an
alternative to CheckStateControlID that you must assign programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the textbox control object, it is better to assign it here
than assign its ID to the CheckStateControlID property because DES operates faster using CheckStateInstance.

When assigned to a CheckBoxList or RadioButtonList, set the Index property to the button within the list.

 Index (integer) – Used with RadioButtonList and CheckBoxList controls to identify the specific button within the list
whose state is evaluated.

Not used when using RadioButton or CheckBox controls.

Values start at 0 where 0 is the first button in the list.

It defaults to 0.

 ValueWhenChecked (double) – Gets and sets a number to use in the expression when the button is checked.

It defaults to 1.

 ValueWhenUnchecked (double) – Gets and sets a number to use in the expression when the button is not checked.

It defaults to 0.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 121 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.ConstantCalcItem Class
The PeterBlum.DES.ConstantCalcItem class supplies a single number – a constant – into your expression.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 Constant (double) – Gets and sets the number to use in the expression. It holds a decimal value using System.Double
type but you can assign an integer to it too. It defaults to 1.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 122 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.ParenthesisCalcItem Class
The PeterBlum.DES.ParenthesisCalcItem class creates a sub expression, where all of its elements are calculated
together first before the result is used in the expression that contains this object. It’s like using parenthesis in a mathematical
expression.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 Expression (PeterBlum.DES.CalcList) – A list of any type of CalcItem objects that are calculated together. Calculations
are always done from the first item in the list to the last. The first item’s Operator property should always be Add.

See step 5 of “Adding the CalculationController Control” for details on setting up the Expression property as ASP.NET
Text, in design mode, and programmatically.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 123 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.ConditionCalcItem Class
The PeterBlum.DES.ConditionCalcItem class lets you select between two sub expressions using IF statement
logic. You can select from any of DES’s Condition objects (the class that Validators use to evaluate data) See “Evaluating
Conditions” in the Validation User’s Guide.

With IF statement logic, you can change the mathematical expression based on settings on the web form. For example, if a
checkbox is used to enable a NumericTextBox, you will use this to determine if the checkbox is checked before using a
NumericTextBoxCalcItem to include its value in the calculation.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 Condition (PeterBlum.DES.BaseCondition) – The Condition object used to select between ExpressionWhenTrue and
ExpressionWhenFalse. You can assign any Condition class. Initially its value is null; you must assign a Condition
object or runtime exception will occur.

When Conditions are evaluated, they return one of three states: “success”, “failed”, and “cannot evaluate”:

o “success” calculates the expression defined in ExpressionWhenTrue.

o “failed” calculates the expression defined in ExpressionWhenFalse. If you set InvalidWhenFalse to true, it will
stop the calculation and report an error. This is a common situation, where anything but the “success” state is
considered an error.

o “cannot evaluate” uses the CannotEvalMode property to determine the action to take. It can select either
ExpressionWhenTrue or ExpressionWhenFalse, report an error, or return 0.

Visual Studio and Visual Web Developer Design Mode Users

The Properties Editor offers this window to select a Condition and to edit its properties.

1. Select the Condition from the DropDownList.

2. Establish the properties in the Properties grid.

3. Click OK.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 124 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ASP.NET Declarative Syntax for the Condition Property

If you want to enter the Condition property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the CalculationController with a ConditionCalcItem whose Condition is set to the CheckStateCondition looking
at CheckBox1.

<des:CalculationController id=CalculationController1 runat="server">
<Expression>
 <des:ConditionCalcItem>

 <ConditionContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" >
 </des:CheckStateCondition>
 </ConditionContainer>

 <ExpressionWhenTrue>
 <des:NumericTextBoxCalcItem TextBoxControlID="DecimalTextBox1">
 </des:NumericTextBoxCalcItem>
 </ExpressionWhenTrue>

 <ExpressionWhenFalse>
 <des:ConstantCalcItem Constant="0">
 </des:ConstantCalcItem>
 </ExpressionWhenFalse>

 </des:ConditionCalcItem>
</Expression>
</des:CalculationController>

Notice that the Condition property never appears in the attributes of the <des:ConditionCalcItem> tag. (It will
be added when using the Properties Editor but it’s completely meaningless.) Instead, the <ConditionContainer>
tag is a child of the ConditionCalcItem tag. That tag never has any attributes. The child to <ConditionContainer>
defines the class and all properties of the Condition:

<des:classname [all properties] />

o des:classname – Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] – Enter the properties into the tag the same way you do for any other control.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 125 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically Setting The Condition

Here are the steps to set the Condition.

1. Create an instance of the desired Condition class. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters. Each demands an “owner” in the first parameter. That
value must be the CalculationController object.

2. Assign property values.

3. Assign the Condition object to the Condition property.

In this example, add the CheckStateCondition, which is checking CheckBox1, to ConditionCalcItem object.

[C#]

PeterBlum.DES.ConditionCalcItem vConditionCalcItem =
 new PeterBlum.DES.ConditionCalcItem();
PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vConditionCalcItem.Condition = vCond;

[VB]

Dim vConditionCalcItem As PeterBlum.DES.ConditionCalcItem = _
 New PeterBlum.DES.ConditionCalcItem()
Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vConditionCalcItem.Condition = vCond

 ExpressionWhenTrue (PeterBlum.DES.CalcList) – When the Condition evaluates as “success”, it evaluates this
expression. If left empty, it returns a value of 0.

This is a list of any type of CalcItem objects that are calculated together. Calculations are always done from the first item
in the list to the last. The first item’s Operator property should always be Add.

See step 5 of “Adding the CalculationController Control” for details on setting up the Expression property as ASP.NET
Text, in design mode, and programmatically. (ExpressionWhenTrue is functionally equivalent to the Expression
property in step 5.)

 ExpressionWhenFalse (PeterBlum.DES.CalcList) – When the Condition evaluates as “failed”, it evaluates this
expression. If left empty, it returns a value of 0.

This is a list of any type of CalcItem objects that are calculated together. Calculations are always done from the first item
in the list to the last. The first item’s Operator property should always be Add.

Sometimes you need your IF statement to report an error when the Condition evaluates as “failed”. Use
InvalidWhenFalse = true to ignore ExpressionWhenFalse and report an error instead.

See step 5 of “Adding the CalculationController Control” for details on setting up the Expression property as ASP.NET
Text, in design mode, and programmatically. (ExpressionWhenFalse is functionally equivalent to the Expression
property in step 5.)

 CannotEvalMode (enum PeterBlum.DES.CalcCondCannotEvalMode) – Determines how the calculation works when
the Condition evaluates as "cannot evaluate". Some Conditions cannot evaluate data until certain values exist. For
example, the RangeCondition cannot evaluate until the text in the textbox is formatted to match what is demanded by the
DataType property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 126 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

The enumerated type PeterBlum.DES.CalcCondCannotEvalMode has these values:

o Error - Stop the calculation. It’s an error. This is the default.

o Zero - Return 0.

o True - Use ExpressionWhenTrue.

o False - Use ExpressionWhenFalse (even when InvalidWhenFalse is true).

 InvalidWhenFalse (Boolean) – Sometimes you need your IF statement to report an error when the Condition evaluates
as “failed”. Normally it uses the expression defined in ExpressionWhenFalse. If you set InvalidWhenFalse to true, it
will stop the calculation and report an error.

When false, use ExpressionWhenFalse. When true, report an error. It defaults to true.

When the Condition cannot evaluate and CannotEvalMode is set to False, the ExpressionWhenFalse is still used.
This only blocks when the Condition evaluates to "failed".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 127 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.CalcControllerCalcItem Class
The PeterBlum.DES.CalcControllerCalcItem class lets you use the value of another CalculationController on
the page. This reduces the size of your client-side code, makes it easier to set up by not managing duplicate expressions, and
runs faster.

The following are properties of this class:

 Operator, Enabled, and ID – See “Properties Common To All CalcItem Classes”.

 CustomCalcFunctionName and CustomCalculation – See “Adding Custom Code to a CalcItem”.

 ControlID (string) – The ID to a CalculationController. This ID must be in the same or an ancestor naming container. If
it is in another naming container, use ControlInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

 ControlInstance (PeterBlum.DES.BaseNumberTextBox) – A reference to a CalculationController. It is an alternative to
ControlID that you must assign programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the textbox control object, it is better to assign it here
than assign its ID to the ControlID property because DES operates faster using ControlInstance.

 InvalidIsZero (Boolean) – Determines what to do when an invalid value is in the other CalculationController.

When true, an invalid value becomes 0 in the calculation and the calculation continues.

When false, it stops the calculation and reports an error.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 128 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding Custom Code to a CalcItem
All CalcItem classes support properties to extend them with your own code. You write code both for the client-side and
server-side. Your code can have these objectives:

 Ignore the original value. Supply code to return your own value. When using this technique, you usually select a
ConstantCalcItem object, leaving its Constant property at its default, and writing code that gets the value. It is common
to get the value from another control on the page, although there are other scenarios. If you get a value from another
field, be aware that it may start as a string. You must convert it into an integer or decimal for the CalculationController to
process it.

 Detect something special about the original value and replace it with another number on a specific condition. A
ConditionCalcItem can do the same thing, so you probably will use that instead of writing custom code.

 Handle errors reported by the CalcItem object. Many of the CalcItem classes can return an error. For example,
NumericTextBoxCalcItem will return an error when the textbox is blank and the BlankIsZero property is false. You
might fix the error by supplying a numeric value.

 Detect that the value is illegal and report an error. For example, if you demand all values are between 1 and 5 and the
CalcItem returns 6, your function can declare it as an error, stopping the calculation. A ConditionCalcItem can do the
same thing by using its InvalidWhenFalse property.

To create custom code, you will write a JavaScript function whose name is specified in the CustomCalcFunctionName
property. You will also write a server side method that uses the delegate PeterBlum.DES.CalcEventHandler and
assign that method to the CustomCalculation property.

Click on any of these topics to jump to them:

 The Client-Side Function and the CustomCalcFunctionName Property

 The Server Side Event Handler and CustomCalculation Property

 Hooking up the Method to the CalcItem.CustomCalculation Property

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 129 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

The Client-Side Function and the CustomCalcFunctionName Property

Create a client-side function in JavaScript and assign its name to the CustomCalcFunctionName property.

Your client-side function will be passed the value already calculated on the CalcItem to which it’s attached. It will get the
numeric value or an indication that an error was detected by the CalcItem object. Your function returns a numeric value – the
original one or a new one, or the JavaScript value NaN to report an error and stop further calculations.

Once defined, assign the name of the function to the CustomCalcFunctionName property.

Note: CustomCalcFunctionName must contain only the function name, no parenthesis or parameters. Since it reflects a
JavaScript function, it must match the case of the function exactly.

Your function must take these three parameters in the order shown:

 pSender (string) – The ClientID of the CalculationController that is using this function.

 pCalcItem (object) - The client-side representation of the CalcItem object that calls this function. If you want a way to
share the same function with several CalcItem objects, assign the ID property on each uniquely. Then look at the
pCalcItem.ID property for the same value. (Note that ID is case sensitive.)

On NumericTextBoxCalcItem's the ClientID of the TextBox is pCalcItem.CID.

 pValue (double) - The value from the calculation already performed by pCalcItem. It is a double.

If the CalcItem object encountered an error, pValue is NaN (a special JavaScript name indicating "not a number").

You can test for NaN with the JavaScript function isNaN(pValue).

The result of the function must be assigned either to a number or NaN. The number is used in the calculation instead of the
original value. NaN lets you indicate an error occurred and stop the calculation.

If you need to know how to add your JavaScript to the page, see “Adding Your JavaScript to the Page”.

Example 1

This function returns the original value for numbers between 1 and 5. All other positive numbers return 5. 0 and below return
an error (NaN). If an error was passed in, it returns an error. The function name “MyCalcFunction” should be assigned to
CustomCalcFunctionName.

function MyCalcFunction(pSender, pCalcItem, pValue)
{
 if (isNaN(pValue)) // if an error was passed, indicate error
 return NaN;
 else if (pValue < 1) // 0 and lower return NaN
 return NaN;
 else if (pValue > 5) // return 5
 return 5;
 else // values between 1-5 return pValue
 return pValue;
}

Example 2

This function returns the value from a hidden input control. It must convert the value from a string to a decimal value using
the JavaScript function parseFloat (which is not culture sensitive so it demands only digits and the period character as
the decimal separator.) The hidden input control has been assigned the id “Hidden1”. The function name “MyCalcFunction2”
should be assigned to CustomCalcFunctionName .

function MyCalcFunction2(pSender, pCalcItem, pValue)
{
 var vFld = DES_GetById('Hidden1');
 return parseFloat(vFld.value); // returns NaN if it conversion fails
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 130 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

The Server Side Event Handler and CustomCalculation Property

Your server-side code must hookup a method that matches the delegate PeterBlum.DES.CalcEventHandler to the
CustomCalculation property.

Your method will be passed the value already calculated on the CalcItem to which it’s attached. It will get the numeric value
or an indication that an error was detected by the CalcItem object. Your function returns a numeric value and a boolean flag
indicating an error to stop further calculations.

Once defined, assign the method to the CustomCalculation property.

Note: The CustomCalculation property only handles one event handler and must be assigned programmatically (it does not
appear in the Properties Editor.)

The CalcEventHandler is defined here:

[C#]

public delegate double CalcEventHandler(
 PeterBlum.DES.CalculationController pSender,
 PeterBlum.DES.BaseCalcItem pCalcItem,
 double pValue,
 ref bool pValid);

[VB]

Public Delegate Function CalcEventHandler(_
 ByVal pSender As PeterBlum.DES.CalculationController, _
 ByVal pCalcItem As PeterBlum.DES.BaseCalcItem, _
 ByVal pValue As Double, _
 ByRef pValid As Boolean) As Double

Parameters

pSender

The CalculationController object that contains this CalcItem.

pCalcItem

The CalcItem object. When you have several CalcItems using the same method, this can help distinguish them. It
also helps to assign the ID property on each CalcItem so your code can identify them. Be sure to typecast this object
to the appropriate CalcItem class before getting its properties.

pValue

The numeric value already determined by the CalcItem object. If the CalcItem object determined there was an error,
this is 0.0 and pValid is false.

pValid

Determines if there is an error. When true, an error is indicated and the calculation will stop processing. You can
change this value, either to report an error (set it to true) or revoke an error (set it to false and return a value as
the function result.)

Return value

Your method should return a Double and set the pValid property like this:

 If the value returned is valid and should be used in the calculation, return the number and set pValid to true.

 If the value is not valid and an error should be reported, return 0.0 and set pValid to false. (The value returned will be
ignored.)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 131 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Hooking up the Method to the CalcItem.CustomCalculation Property

In Page_Load(), you attach your method to the CustomCalculation property. The syntax is shown here attaching to the
method “MyCalcMethod”. The CalcItem object was previously assigned an ID of “UseCalc1” so it can be retrieved into the
variable vCalcItem.

[C#]

PeterBlum.DES.BaseCalcItem vCalcItem = CalculationController1.FindByID("UseCalc1");
vCalcItem.CustomCalculation = new PeterBlum.DES.CalcEventHandler(MyCalcMethod);

[VB]

Dim vCalcItem As PeterBlum.DES.BaseCalcItem = _
 CalculationController1.FindByID("UseCalc1")
vCalcItem.CustomCalculation = _
 New PeterBlum.DES.CalcEventHandler(AddressOf MyCalcMethod)

Example

This function returns the original value for numbers between 1 and 5. All other positive numbers returns 5. 0 and below
return an error. If an error was passed in, an error is returned. The method MyCalcMethod should be assigned to
CustomCalculation.

[C#]

public double MyCalcFunction(PeterBlum.DES.CalculationController pSender,
 PeterBlum.DES.BaseCalcItem pCalcItem, double pValue, ref bool pValid)
{
 if (!pValid)
 return 0.0; // pValid is already false
 else if (pValue < 1) // 0 and lower return an error
 {
 pValid = false;
 return 0.0;
 }
 else if (pValue > 5) // return 5
 return 5;
 else // values between 1-5 return pValue
 return pValue;
}

[VB]

Public Function MyCalcFunction(_
 ByVal pSender As PeterBlum.DES.CalculationController, _
 ByVal pCalcItem As PeterBlum.DES.BaseCalcItem, _
 ByVal pValue As Double, ByRef pValid As Boolean) As Double

 If Not pValid Then
 Return 0.0 ' pValid is already False
 ElseIf pValue < 1 Then ' 0 and lower return an error
 pValid = False
 Return 0.0
 ElseIf pValue > 5 Then ' return 5
 Return 5
 Else ' values between 1-5 return pValue
 Return pValue
 End If
End Function

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 132 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Subclassing CalculationController
If you subclass PeterBlum.DES.CalculationController, you must tell DES about it so it can be used with DES’s validators.
Here’s how.

1. Open the custom.DES.config file in your [web application]\DES folder.

2. Locate the <ThirdPartryControls> section.

3. Add this node to <ThirdPartyControls> where class is your full class name.

<ThirdPartyControl class="class" sameas="textbox" property="ValueText" >
 <GetTextScript>[DES_CalcFromCond]</GetTextScript>
</ThirdPartyControl>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 133 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Interactive Hints
A hint on a field lets you offer guidance for data entry on the textbox. For example, if the textbox accepts integers between 1
and 5, say “Enter a number between 1 and 5.”. It is displayed as the control gets focus and is hidden when focus is lost.

A tooltip is another kind of hint but it requires the mouse to point to the control to see it. Data entry fields need to show their
hint as the user is editing, usually without the mouse pointing into the control. So the tooltip is ineffective during data entry.
To solve this, developers sometimes provide labels with hints near a data entry field to assist the user. Due to the static nature
of labels, they take up a lot of screen space. That often leads to reducing the information shown in the hint. Since hints are
there to assist the user, you don’t want to be constrained by these space limitations. DES’s Interactive Hints feature solves
this.

The Interactive Hints feature can display your hint in several ways:

 In a PopupView. A PopupView is similar to a ToolTip, created with HTML and
Javascript to float near the control. It can be dragged and closed. It can be customized
with style sheets, images, and settings using the Global Settings Editor. Shown here.

 In a Label on the page. As the data entry control gets focus, a hint is shown. As focus is
lost, the hint is removed. Since only one control can have focus at a time, a single Label can show all of the hints. You
can enhanced the formatting by enclosing the Label in a Panel, which will be shown and hidden.

 In standard tooltips or Enhanced ToolTips. This lets the user point to the control at any time to read the hint.

 In the browser’s status bar as focus enters the control.

Click on any of these topics to jump to them:

 Features

 Using Interactive Hints

 Displaying Hints: The PeterBlum.DES.HintFormatter Class

 Page-Level Hint Settings:
The PeterBlum.DES.Globals.Page.HintManager Property

 Adding HintFormatters to the SharedHintFormatters Property

 Defining PopupViews

 Using PopupViews

 Defining Hints shown on the Page

 Using Hints shown on the Page

 Customize the Text of the Hint: The Text Function

 Show and Hide the Hint On Demand

 Adding a Hint to any Control Programmatically:
PeterBlum.DES.Globals.Page.AddHintToControl Method

 Properties for the PeterBlum.DES.HintFormatter Class

 Properties on the PeterBlum.DES.Globals.Page.HintManager Property

 Properties for the PeterBlum.DES.HintPopupView Class

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 134 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
Use demos here: http://www.peterblum.com/DES/DemoHint.aspx.

The primary user interface of a hint is a Label control on the page or a PopupView, floating near the control.

When using Labels
 The Label control uses screen real-estate but is optimized in three ways:

o One Label can be used by several controls, such as those grouped together.

o When hidden, the Label can optionally restore the screen space it uses much like validators do with their
ErrorFormatter Display property is set to Dynamic.

o Let the Label share the same location on the page as the control’s validators. When there are validation error
messages, DES can prevent the hint from showing.

 A Label can display formatted text, including HTML tags.

 The Label usually just contains the hint for the user. If you want it enclosed in a box or shown along with images and
other controls, enclose the Label in the Panel. DES will show and hide the Panel while updating the Label with the
correct hint text.

 Include a JavaScript function to customize what happens when DES shows and hides the Label or Panel. For example,
you could use absolute positioning to move the Label nearer to the textbox with the hint.

When using PopupViews
A PopupView is similar to a ToolTip, created with HTML and Javascript to float near the
control.

 Create as many PopupView definitions as needed in the Global Settings Editor.

 Style sheets control much of the appearance, including colors, borders, and fonts.
There are predefined style sheets with yellow, red, blue and grey color schemes in the DES\Appearance\Interactive
Pages\Hints.css style sheet file. The Global Settings Editor knows about these schemes so you only select a scheme
instead of setting up numerous properties.

 The triangular extension shown at the top of the PopupView is called a Callout. It is a gif image file with transparency.
The callout is optional. PopupViews can appear on any side of the textbox. When using callouts, there are images
pointing left, up, down, and right.

 It has an optional titlebar. The title bar can have a label, including unique text for each control from the HintHelp
property. It also has an optional close box.

 It can be dragged to expose other controls that it is covering. While dragging, its opacity decreases so the user can see
other controls under it.

 Opacity changes in other ways. There is a default maximum opacity, so you can always see through it slightly if desired.
If it is just shown or the mouse moves over it, it increases opacity to the maximum. After the mouse moves away, it
reduces to a lessmore opaque state.

 It has a fixed width. Its height varies depending on the amount of text from the hint. There are predefined PopupViews
for a variety of widths to choose the best width for the given text.

 It supports the HintHelp property from controls that use hints by showing a Help button (image or link). When clicked,
there are a number of things you can do.

o Switch the initial text to the text from the HintHelp property, offering the user expanded directions.

o Run javascript that can use the text from HintHelp to customize it

o Go to a URL with the text from the HintHelp containing part or all of the URL. This is great for opening a help
page with a specific topic ID associated with the control.

http://www.peterblum.com/DES/DemoHint.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 135 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 The hint text can contain HTML. The PopupView can define HTML that appears before and after the hint text, such as a
for showing an image.

Other ways to display Hints
 Show the hint in standard tooltips or Enhanced ToolTips. This lets the user point to the control at any time to read the

hint.

 Show the hint in the browser’s status bar as focus enters the control.

Interactively Customizing the Hint Text
 Validation error messages are a very important part of data entry. They can automatically insert themselves into the hint

text. They can either be shown first or completely replace the hint text. Provide a style sheet to distinguish the validator
error messages from the other text.

 Include a JavaScript function to preprocess the hint’s text. This allows you to customize the text based on the situation.
For example, you define the token “{0}” in the hint text. Your JavaScript function replaces the token with the a value
from the page.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 136 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Interactive Hints
There are several parts to the Interactive Hints feature:

 The HintFormatter class – Defines the display rules for a hint. The control that shows a hint needs this to know how
to display its hint text.

 The controls that show a hint, such as textboxes. They need 4 key properties:

o Hint – The hint text. By default, the ToolTip property can also supply the hint its text so long as the Hint
property is blank. This rule can be overridden with the HintManager.ToolTipsAsHints property.

o HintHelp – If using a PopupView, its usage is based on the PopupView.HelpBehavior property. It can be
additional help text, the PopupView’s title, text to insert into a script, or text to insert into a URL for a hyperlink.

o LocalHintFormatter and SharedHintFormatterName – Choose one of these to connect the HintFormatter to the
control showing the hint. SharedHintFormatterName takes precedence over LocalHintFormatter.
LocalHintFormatter is selected when SharedHintFormatterName is blank. LocalHintFormatter is also selected
by SharedHintFormatterName is “{DEFAULT}” but the HintManager.DefaultSharedHintFormatterName
property of the PageManager control and PeterBlum.DES.Globals.Page.HintManager is blank.

Most of DES’s controls have these controls built in. For any other control, add the NativeControlExtender. It has these
properties.

 When you want to display the hint as a popup, set up PopupView definitions. Set the HintFormatter.DisplayMode to
Popup and HintFormatter.PopupViewName to the name of a defined PopupView.

 When showing the hint on the page, set up Labels and optionally Panels where the hint will appear. Set the
HintFormatter.DisplayMode to either Static or Dynamic and HintFormatter.HintControlID to the ID of the
Label or Panel.

Use demos here: http://www.peterblum.com/DES/DemoHint.aspx.

Click on any of these topics to jump to them:

 Displaying Hints: The PeterBlum.DES.HintFormatter Class

 Page-Level Hint Settings:
The PeterBlum.DES.Globals.Page.HintManager Property

 Showing Validation Errors In The Hints

 Adding HintFormatters to the SharedHintFormatters Property

 When using a PopupView: AddSharedHintPopupView()

 When using a Label on the Page: AddSharedHintOnPage()

 Using Your Own HintFormatter definition: AddSharedHintFormatter()

 Defining PopupViews

 Creating your own Callouts

 Adding your own Callouts to the PopupView Definition

 Using PopupViews

 Defining Hints shown on the Page

 Using a Label

 Using a Panel containing a Label

 Customize How Hints Appear: The Formatter Function

 Using Hints shown on the Page

 Customize the Text of the Hint: The Text Function

 Show and Hide the Hint On Demand

http://www.peterblum.com/DES/DemoHint.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 137 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Displaying Hints: The PeterBlum.DES.HintFormatter Class
The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its name, display
mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

See “Using PopupViews”, “Using Hints shown on the Page”, and “Properties for the PeterBlum.DES.HintFormatter Class”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 138 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Page-Level Hint Settings:
The PeterBlum.DES.Globals.Page.HintManager Property
The PeterBlum.DES.Globals.Page.HintManager property establishes a list of HintFormatters to be shared amongst the
controls on the page in the SharedHintFormatters property. While you can create unique HintFormatter objects on each
control, why not define them for each unique case, such as each unique label or PopupView? Additionally, these shared
HintFormatters generate less JavaScript code embedded into your web form.

See “Adding HintFormatters to the SharedHintFormatters Property”, below.

To make it even easier:

 Establish one HintFormatter object as the default by setting its name to the DefaultSharedHintFormatterName
property. All controls showing hints will use this default automatically, because their SharedHintFormatterName
property defaults to the token “{DEFAULT}”.

 When using PopupViews, you can define the name of a Hint PopupView Definition (created in the Global Settings
Editor) in the SharedHintFormatterName property of the control showing the hint. It will automatically create a
shared HintFormatter using the same name.

Typically the SharedHintFormatters feature is used with PopupViews and when a Label is shared by several controls. It
makes more sense to create HintFormatters on individual controls showing hints when they need their own Labels on the
page. In that case, set up the HintFormatter in the controls’ LocalHintFormatter property and set that control’s
SharedHintFormatterName property to "".

Showing Validation Errors In The Hints

When using the DES Validation Framework, you can insert the error messages associated with a data entry control into its
Hint. The error message is probably as important if not more important than the initial hint. If you feel it’s more important,
you can have the hint text entirely replaced by the error messages. Otherwise, you can have them both appear with the error
messages shown first. Use the HintsShowErrors property. It has these values:

 Hint - Show the Hint text but not the validation errors.

 OneErrorAndHint - Show the first validation error and the Hint text.

 AllErrorsAndHint - Show all validation errors and the Hint text.

 OneError - Show the first validation error but not the Hint text.

 AllErrors - Show all validation errors but not the Hint text.

When error messages are displayed, you can use style sheets to change the appearance of the overall text (such as make a red
background) using the HintsShowErrorsCssClass property and the font of just the error messages using the
HintsShowErrorsCssClass2 property. See “Properties on the PeterBlum.DES.Globals.Page.HintManager Property”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 139 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding HintFormatters to the SharedHintFormatters Property

Visual Studio and Visual Web Developer Design Mode Users

The easiest way to work with SharedHintFormatters is to add a PageManager control. In design mode, open the
HintManager property to expose the SharedHintFormatters property. Then open its editor.

See “Properties for the PeterBlum.DES.HintFormatter Class” for details on its properties.

Text Entry Users

Add the PageManager control. Add <des:HintFormatter> tags into the <des:PageManager> control like this:

<des:PageManager ID="PageManager1" runat="server">
 <HintManager>
 <SharedHintFormatters>
 <des:HintFormatter DisplayMode="Static"
 HintControlID="Label1" InStatusBar="True" Name="UsingLabel1" />
 </SharedHintFormatters>
 </HintManager>
</des:PageManager>

See “Properties for the PeterBlum.DES.HintFormatter Class” for details on the properties.

Programmatically working with the HintManager

When working programmatically, you don’t need the PageManager control’s HintManager property. Instead, you use
PeterBlum.DES.Globals.Page.HintManager property with these methods:

AddSharedHintPopupView() – See “When using a PopupView: AddSharedHintPopupView()”.

AddSharedHintOnPage() – See “When using a Label on the Page: AddSharedHintOnPage()”

AddSharedHintFormatter() – See “Using Your Own HintFormatter definition: AddSharedHintFormatter()”

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 140 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

When using a PopupView: AddSharedHintPopupView()

Call PeterBlum.DES.Globals.Page.HintManager.AddSharedHintPopupView() to add HintFormatter
object that uses a PopupView.

[C#]

PeterBlum.DES.HintFormatter AddSharedHintPopupView(
 string pName, bool pDefault,
 string pPopupViewName);

PeterBlum.DES.HintFormatter AddSharedHintPopupView(
 string pName, bool pDefault,
 string pPopupViewName, bool pInStatusBar, bool pInTooltip);

[VB]

Function AddSharedHintPopupView(ByVal pName As String, _
 ByVal pDefault As Boolean, ByVal pPopupViewName As String) _
 As PeterBlum.DES.HintFormatter

Function AddSharedHintPopupView(ByVal pName As String, _
 ByVal pDefault As Boolean, ByVal pPopupViewName As String, _
 ByVal pInStatusBar As Boolean, ByVal pInTooltip As Boolean) _
 As PeterBlum.DES.HintFormatter

Parameters

pName

A unique name for this HintFormatter. If unassigned, it will get the pPopupViewName.

pDefault

When true, use pName as the default for any SharedHintFormatterName property that is "{DEFAULT}" on the
controls using hints.

It sets PeterBlum.DES.Globals.Page.HintManager.DefaultSharedHintFormatterName. It has no affect when
HintManager.DefaultSharedHintFormatterName is already assigned.

pPopupViewName

The name of a PopupView definition from the PopupView Hint definitions defined in the Global Settings Editor.

pInStatusBar

When true, show the hint in the status bar of the browser. When not supplied, HintFormatter.InStatusBar is set
to false.

pInTooltip

When true, the control's tooltip is assigned the hint when there is nothing already assigned to the tooltip. The
tooltip does not support the merger of validation error messages. When not supplied, HintFormatter.InToolTip is
set to true.

Return value

The HintFormatter object that was defined.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 141 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example

Adds a PopupView named “YellowToolTip”. It uses that same name for the HintFormatter.Name by passing "" for the
pName parameter. It uses the tooltip and status bar features.

 [C#]

PeterBlum.DES.HintFormatter vHF =
 PeterBlum.DES.Globals.Page.HintManager.AddSharedHintPopupView(
 "", false, "YellowToolTip", true, true);

[VB]

Dim vHF As PeterBlum.DES.HintFormatter = _
 PeterBlum.DES.Globals.Page.HintManager.AddSharedHintPopupView(_
 "", False, "YellowToolTip", True, True)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 142 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

When using a Label on the Page: AddSharedHintOnPage()

Call PeterBlum.DES.Globals.Page.HintManager.AddSharedHintOnPage() to add HintFormatter object
that uses a control on the page, such as a Label or Panel.

[C#]

PeterBlum.DES.HintFormatter AddSharedHintOnPage(
 string pName, bool pDefault,
 Control pHintControl,
 PeterBlum.DES.HintDisplayMode pDisplayMode,
 bool pHiddenOnError);

PeterBlum.DES.HintFormatter AddSharedHintOnPage(
 string pName, bool pDefault,
 Control pHintControl,
 PeterBlum.DES.HintDisplayMode pDisplayMode,
 bool pInStatusBar, bool pInTooltip, bool pHiddenOnError);

[VB]

Function AddSharedHintOnPage(ByVal pName As String, _
 ByVal pDefault As Boolean,
 ByVal pHintControl As Control, _
 ByVal pDisplayMode As PeterBlum.DES.HintDisplayMode _
 ByVal pHiddenOnError As Boolean) _
 As PeterBlum.DES.HintFormatter

Function AddSharedHintOnPage(ByVal pName As String, _
 ByVal pDefault As Boolean, _
 ByVal pHintControl As Control, _
 ByVal pDisplayMode As PeterBlum.DES.HintDisplayMode _
 ByVal pInStatusBar As Boolean, ByVal pInTooltip As Boolean, _
 ByVal pHiddenOnError As Boolean) _
 As PeterBlum.DES.HintFormatter

Parameters

pName

A unique name for this HintFormatter. Required.

pDefault

When true, use pName as the default for any SharedHintFormatterName property that is "{DEFAULT}" on the
controls using hints.

It sets PeterBlum.DES.Globals.Page.HintManager.DefaultSharedHintFormatterName. It has no affect when
HintManager.DefaultSharedHintFormatterName is already assigned.

pHintControl

This points to a control where the Hint will appear.

Use a Panel, Label, any control that can have its innerHTML replaced, or any control containing a Label where the
Hint will appear.

This control has its visibility changed as focus moves in and out of the control with the hint.

The Hint text will be assigned as follows:

If this is a containing control with the Label that shows the hint, make sure that Label has the ID =
pHintControl.ID+"_Text". Otherwise, pHintControl itself will show the hint in its innerHTML.

pDisplayMode

Pass only HintDisplayMode.Static or HintDisplayMode.Dynamic. When Static, the Label
preserves is space on the page when hidden. When Dynamic, it uses no space on the page when hidden.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 143 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

pInStatusBar

When true, show the hint in the status bar of the browser. When not supplied, HintFormatter.InStatusBar is set
to false.

pInTooltip

When true, the control's tooltip is assigned the hint when there is nothing already assigned to the tooltip. The
tooltip does not support the merger of validation error messages. When not supplied, HintFormatter.InToolTip is
set to true.

pHiddenOnError

When true, do not show the hint when any validator attached to this control reports an error. This allows you to
place the Label in the same location as the validator.

Return value

The HintFormatter object that was defined.

Example

Uses the Label “HintLabel”. That control’s ID is also used as the name of this HintFormatter. It uses the tooltip and status bar
features.

[C#]

PeterBlum.DES.HintFormatter vHF =
 PeterBlum.DES.Globals.Page.HintManager.AddSharedHintOnPage(
 HintLabel1.ID, HintLabel1, PeterBlum.DES.HintDisplayMode.Dynamic,
 true, true, false);

[VB]

Dim vHF As PeterBlum.DES.HintFormatter = _
 PeterBlum.DES.Globals.Page.HintManager.AddSharedHintPopupView(_
 HintLabel1.ID, HintLabel1, PeterBlum.DES.HintDisplayMode.Dynamic, _
 True, True, False)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 144 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Your Own HintFormatter definition: AddSharedHintFormatter()

Call PeterBlum.DES.Globals.Page.HintManager.AddSharedHintFormatter() to add HintFormatter
object that uses the exact properties you set up. This is often used when you are providing a custom Formatting Function
(HintFormatter.FormattingFunctionName) or Text Function (HintFormatter.TextFunctionName).

[C#]

void AddSharedHintFormatter(PeterBlum.DES.HintFormatter pHintFormatter,
 bool pDefault);

[VB]

Sub AddSharedHintFormatter(ByVal pHintFormatter As PeterBlum.DES.HintFormatter, _
 ByVal pDefault As Boolean)

Parameters

pHintFormatter

The HintFormatter object, with its properties fully assigned. The HintFormatter.Name must be assigned. See
“Properties for the PeterBlum.DES.HintFormatter Class”.

pDefault

When true, use pName as the default for any SharedHintFormatterName property that is "{DEFAULT}" on the
controls using hints.

It sets PeterBlum.DES.Globals.Page.HintManager.DefaultSharedHintFormatterName. It has no affect when
HintManager.DefaultSharedHintFormatterName is already assigned.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 145 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Defining PopupViews
A PopupView is similar to a ToolTip, created with HTML and Javascript to float near the
control. For an overview of its features, see “When using PopupViews”.

Click on any of these topics to jump to them:

 View an existing definition

 Edit a definition

 Add a definition

 Rename a definition

 Delete a definition

 Creating your own Callouts

 Adding your own Callouts to the PopupView Definition

PopupView definitions are created within the Global Settings Editor and stored in the custom.des.config file. Within
the Global Settings Editor, you can add, edit, rename, and delete definitions. In addition, you can choose one of your
PopupView definitions to be the default used when the token “{DEFAULT}” appears in a
HintFormatter.PopupViewName property by setting its name in the DefaultHintPopupViewName property.

Here is how to define PopupViews.

1. Open the Global Settings Editor.

It is available from the Windows Start menu, the Context menu and SmartTag on the PageManager control, and in the
[DES Product Folder].

2. Confirm that the custom.des.config file for your web application is loaded. If it is not, click the Open button
and select it.

3. Select the PopupView definitions used by Hint Formatters topic in the list on the left.

4. View, add, edit, rename or delete a PopupView definition, using the topics below. See also “Properties for the
PeterBlum.DES.HintPopupView Class”.

5. Save the changes using the Save button.

6. If you have changed the name of an existing PopupView, review your web forms in case the old name is in use. Correct
those that need it.

Callout

Header/Title

Close Button

Footer

Help Button

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 146 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

View an existing definition

To view an existing definition, click on its name in the items below the PopupView definitions used by HintFormatters
topic heading. There are two views. The initial display shows the most common properties and combines a number of
properties for style sheets and callout images into a single Theme. Click the Advanced button to see a Properties Editor with
all available properties.

Fields on the Initial View

For details, see “Properties for the PeterBlum.DES.HintPopupView Class”.

 Theme – DES predefines style sheets and images that correspond to these colors: Light Red, Light Blue, Alice Blue,
Light Yellow, and Light Gray. When you pick one of these, the following PopupView class properties are changed:
CssClass, HeaderCssClass, BodyCssClass, FooterCssClass, CloseButtonCssClass, HelpButtonCssClass, and
CalloutUrlFolder. If it says Custom, then you have modified at least one of these properties in the Advanced view.

 Enable Callouts – Sets the PopupView.EnableCallouts property. Callouts are the triangles projecting out of the
PopupView to point it to the control with the hint. They are gif images stored in the folder defined by
PopupView.CalloutUrlFolder. Use the Advanced View to edit the CalloutUrlFolder property.

 Default position – Sets the PopupView.DefaultPosition property. Determines the default position when the popup view
appears. If there is not enough screen space to appear in the default position, DES will reposition it.

 Width – The width of the definition in pixels. Each definition has a fixed width (although its height can change). As a
result, you usually define several definitions with the same features, but varying the width.

 Help Behavior – Sets the PopupView.HelpBehavior property. Determines how the HintHelp property on each control
behaves. In most, cases it adds the Help button and determines how it behaves. Here are its values:

o Not used – Do not use HintHelp. Do not show a Help Button.

o Show a button that appends the help text – Use the Help Button. When clicked, redraw with
the HintHelp text appended to the current text. The value of PopupView.AppendHelpSeparator is inserted
between the original hint and the text of HintHelp.

o Show a button that replaces the help text – Use the Help Button. When clicked, redraw
with the HintHelp text replacing the current text.

o Show the help text in the titlebar – The HintHelp text appears in the header as the title. It is
used instead of the PopupView.HeaderText property value. There is no Help Button.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 147 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

o Show a button that hyperlinks – Use the Help Button that acts as a hyperlink. Define the URL in
the URL field. The HintHelp text will appear in the “{0}” token.

o Show a button that hyperlinks using another window – Use the Help Button that acts as a
hyperlink which opens in a new window. Define the URL in the URL field. The HintHelp text will appear in
the “{0}” token.

o Show a button that runs a script – Runs the script supplied in the Script field. The HintHelp
text will replace the token “{0}” in that script.

 Help Button appearance – When Help Behavior specifies a Help button, you can use an image or text for that button.
DES predefines the image and makes it available as the first radio button. Otherwise, specify the text in the Text field
or the image’s URL in the ImageUrl field.

 Make Global Default – When clicked, this PopupView definition will become the default for all HintFormatters whose
PopupViewName property is “{DEFAULT}”. It updates the setting DefaultHintPopupViewName in the topic
“HintManager Defaults” of the Global Settings Editor.

 Advanced – Switch to the Advanced view, where you have access to every PopupView property using a Properties
Editor.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 148 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Edit a definition

To edit a definition, click on its name in the items below the PopupView definitions used by Hint Formatters topic
heading. Change the properties on either the default or Advanced view. You do not need to click anything to save your edits.
(You also cannot undo your edits without reloading the custom.des.config file.)

See “Fields on the Initial View”, above, and “Properties for the PeterBlum.DES.HintPopupView Class”.

Add a definition

To add a definition, click the Add button in the lower right corner of the window or right click on the PopupView
definitions used by Hint Formatters topic and chose Add.

Use “Fields on the Initial View”, above, to fill in the window. When done, click Save.

It will automatically create a name for you based on the Theme and Width. See below to rename it.

Rename a definition

Click on the name of the PopupView definition in the list, or click the Rename button when viewing the definition.

Note: The Global Settings Editor will automatically rename definitions if it created the original name and you change either
the Theme or Width field.

Delete a definition

Click on the name of the PopupView definition in the list and click the Delete button at the bottom of the window.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 149 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Creating your own Callouts

The Callout is an image file. In fact, there are 4 of these image files, one for each direction: left, right, top, and bottom. They
have these characteristics:

 Use a gif file. Make all pixels “outside” of your image transparent.

 To make their borders merge with the box of the popup view, do not use a border where it intersects with the box. You
will also make the image slightly overlap the box with the CalloutLeftRightSize and CalloutTopBottomSize
properties.

 The Callout image is inset along the box as determined by the CalloutOffsetAlongSide property. In the above image,
CalloutOffsetAlongSide is set to 10 pixels.

 All four image files have a specific name: Left.gif, Right.gif, Top.gif, Bottom.gif. They all go into single folder whose
Url is specified in the CalloutUrlFolder.

Callout Image
20 pixels high

CalloutTopBottomSize.Height
is set to 19 to overlap

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 150 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding your own Callouts to the PopupView Definition

1. Create 4 callout image files, one for each direction.

 They must be named Left.gif, Right.gif, Top.gif, and Bottom.gif. Each points in the direction taken from the
filename.

 They all go in a single folder. A suggesting containing folder is
[Web application root]/DES/Appearance/Shared/Callouts. However, any folder that is accessible to your
web application through a URL is acceptable.

 The Top and Bottom images should have identical dimensions to each other.

 The Left and Right images should have identical dimensions to each other.

2. In the PopupView definition, assign these properties:

 EnableCallout = true

 CalloutUrlFolder = the URL to the folder. If using the suggested path: “{APPEARANCE}/Shared/Callouts/your
foldername”.

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined
as you set up the web site.

 CalloutLeftRightSize.Width = The width of the Left and Right images. To overlap the PopupView box, subtract 1.

 CalloutLeftRightSize.Height = The height of the Left and Right images.

 CalloutTopBottomSize.Width = The width of the Top and Bottom images.

 CalloutTopBottomSize.Height = The height of the Top and Bottom images. To overlap the PopupView box,
subtract 1.

 CalloutOffsetAlongSide = How many pixels to offset the image along the side of the PopupView box. It defaults to
10 pixels.

See “Callout Properties” for details.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 151 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using PopupViews
For each control that needs a hint, it must have these four properties: Hint, HintHelp, SharedHintFormatterName, and
LocalHintFormatter. Most DES controls have them. For any other control, add a NativeControlExtender control. It has
these properties. (See the “General Features Guide” for this control.)

Here is how to use these properties:

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Set the text of the hint in the Hint property. It can contain HTML tags if desired. If you are using the same text in the
ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint is "" unless you
set the HintManager.ToolTipsAsHints property to False.

2. If you are using the PopupView.HelpBehavior property, set the HintHelp property to the appropriate text, whether it is
a more detailed description, a title, a URL, or a script. If left blank and HelpBehavior is ButtonAppends or
ButtonReplaces, the Help button is not shown.

3. If you also want to show validation error messages (from the DES Validation Framework) in the PopupView, use the
HintManager.HintsShowErrors property.

4. Pick a PopupView definition. Usually the width differs depending on the size of the Hint text.

5. Define a HintFormatter that uses the PopupView using one of these three approaches:

 If you don’t need the hint shown in the browser’s status bar, just set the SharedHintFormatterName to the name of
the Popup View. DES automatically creates a HintFormatter for you with HintFormatter.DisplayMode and
HintFormatter.PopupViewName correctly set.

 You will need to use a HintFormatter object. If you can use the same PopupView definition name and HintFormatter
properties for several controls on this page, add a HintFormatter object to the
HintManager.SharedHintFormatters property. This can be done in the PageManager control or
programmatically.

o Set the HintFormatter.PopupViewName to the name of the PopupView.

o Set the HintFormatter.DisplayMode to Popup.

o Consider if these properties apply: InToolTip, InStatus, and TextFunctionName. (All others are used when
Display mode is not set to Popup.)

See “Properties for the PeterBlum.DES.HintFormatter Class”.

 Otherwise, use the LocalHintFormatter property on the control:

o Set the HintFormatter.PopupViewName to the name of the PopupView.

o Set the HintFormatter.DisplayMode to Popup.

o Consider if these properties apply: InToolTip, InStatus, and TextFunctionName. (All others are used when
Display mode is not set to Popup.)

See “Properties for the PeterBlum.DES.HintFormatter Class”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 152 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Defining Hints shown on the Page
The hint control is the HTML that displays the hint. It is usually a Label control or a Panel containing a Label.

DES performs two actions on your Panel and Label controls.

 It shows and hides the control assigned to the HintFormatter.HintControlID property.

 It updates the text of the Label. (Specifically, it updates the innerHTML so it supports HTML.)

You can customize its behavior by creating a client-side function that does anything you want. It can replace DES’s ability to
change visibility and the text or it can let DES continue to do these actions while your function does other things. See
“Customize How Hints Appear: The Formatter Function”.

Click on any of these topics to jump to them:

 Using a Label

 Using a Panel containing a Label

 Customize How Hints Appear: The Formatter Function

Using a Label

Add a Label to the page where you want the hint’s text to appear. You can have several of them, one for each control or for a
group of controls that share the hint’s location on the page.

<asp:Label id="HintLabel" runat="server"></asp:Label>

The Label can be substituted with any tag that allows setting its “innerHTML”, including , <p
runat="server">, <td runat="server">, and <div runat="server">. The innerHTML will always be
replaced by the hint text.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 153 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using a Panel containing a Label

You can put the Label inside a Panel if you want it surrounded by some formatting, like a border and title. When you do so,
assign the ID of the Label to the ID of the Panel plus the text "_Text".

When used, the Panel will be shown and hidden (along with the Label it contains). When not used, the Label will be shown
and hidden.

Here is an example of the Panel with a Label:

<asp:Panel id="HintPanel" runat="server" width="20px">
 <asp:Label id="HintPanel_Text" runat="server"></asp:Label>
</asp:Panel>

It is a good idea to set the Panel’s width. Here is an example with formatting that establishes a yellow background, border,
and centers the text.

<asp:Panel id="HintPanel" runat="server" width="200px"
 style="BORDER-RIGHT:gray thin outset; BORDER-TOP:gray thin outset;
 BORDER-LEFT:gray thin outset; BORDER-BOTTOM:gray thin outset;
 BACKGROUND-COLOR:lightyellow; TEXT-ALIGN:center">
 <asp:Label id="HintPanel_Text" runat="server"></asp:Label>
</asp:Panel>

The Panel can be substituted with almost any control that can contain child control tags, such as a Table control, TableCell
control, <table runat="server">, <td runat="server">, <div runat="server">, <span
runat="server">, and <p runat="server"> tag.

The Label can be substituted with any tag that allows setting its “innerHTML”, including , <p
runat="server">, <td runat="server">, and <div runat="server">. The innerHTML will always be
replaced by the hint text.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 154 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Customize How Hints Appear: The Formatter Function

If you want additional control over the appearance when the hint is shown or hidden, you can provide your own JavaScript
function. You can use it to assign the hint or change appearance of the Hint control or any element on the page. Your
function returns a flag indicating if DES should still change visibility and the hint text or not.

Your function takes these parameters in the order show:

 pFld (object) – The DHTML element to which the hint is attached. The pFld.id attribute is often used to determine
which textbox is passed to your function. The pFld.value contains the text currently in the textbox. For other
attributes, see “DHTML Reference for <input type='text'>”.

 pSH (boolean) - When true, show the hint. When false, hide the hint. If you plan to change visibility, here are
guidelines:

o Show in Static mode: pCFld.style.visibility = "inherit";

o Show in Dynamic mode: pCFld.style.visibility = "inherit"; pCFld.style.display = "";

o Hide in Static mode: pCFld.style.visibility = "hidden";

o Hide in Dynamic mode: pCFld.style.visibility = "hidden"; pCFld.style.display = "none";

 pHint (string) - Text of the hint. It may contain HTML tags.

 pCFld (element) – The element that is the hint control. This is what you will be modifying. If it is a Panel, your Label is
available by using this function:

vFld = DES_GetById(pCFld.id + "_Text");

It is null when you have nothing assigned to the HintFormatter.HintControlID property. In that case, your function
must internally know the ID of an element.

Your function must return true if it has changed visibility and the text; return false if it needs DES to change visibility
and the text.

Your function can use DES_SetInnerHTML(ID, pHint) to change the innerHTML with the hint.

See “Adding Your JavaScript to the Page” for instructions on adding JavaScript to the page.

Example

Makes a popup hint that appears below the textbox by setting the panel with absolute positioning and establishing its top and
left positions. It lets DES handle visibility and assigning the text. HintFormatter.FormatterFunctionName is assigned to
“MyCstmHint”.

Note: This popup hint technique works well only when the data entry control is not inside a “container” tag like a <div> or
<table>. Once in those, better positioning calculations are needed. The PopupView feature will handle this automatically.

<script type="text/javascript" language="javascript">
function MyCstmHint(pFld, pSH, pHint, pCFld)
{
 if (pSH)
 {
 pCFld.style.position = "absolute";
 pCFld.style.posLeft = pFld.offsetLeft - 5;
 pCFld.style.posTop = pFld.offsetTop + pFld.clientHeight + 5;
 }
 return false; // let the normal processing change the hint and visibility
}
</script>

http://msdn2.microsoft.com/en-us/library/ms535841.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 155 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Hints shown on the Page
For each control that needs a hint, it must have these four properties: Hint, HintHelp, SharedHintFormatterName, and
LocalHintFormatter. Most DES controls have them. For any other control, add a NativeControlExtender control. It has
these properties. (See the “General Features Guide” for this control.)

Here is how to use these properties:

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Set the text of the hint in the Hint property. It can contain HTML tags if desired. If you are using the same text in the
ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint is "" unless you
set the HintManager.ToolTipsAsHints property to False.

2. If you also want to show validation error messages (from the DES Validation Framework) in the PopupView, use the
HintManager.HintsShowErrors property.

3. Determine what kind of appearance that you want for your hint. It can be simply a Label or a Panel whose formatting
encloses a Label and is fully hidden when there is no hint text to show. See “Defining Hints shown on the Page”.

4. Determine the locations for hints. You can have one on the page, one for each group of controls, or even one for each
control. When you put one next to a control, it can be located where Validators appear as there is a feature to prevent the
hint from showing when a Validator is shown.

5. Add the controls for hints to the page. Remember that they will be hidden until focus is set to them.

If you are using a Panel that contains a Label, make sure the Label’s ID is Panel.ID + "_Text".

6. Define a HintFormatter using one of these three approaches:

 If several controls will share a HintFormatter, add a HintFormatter object to the
HintManager.SharedHintFormatters property. This can be done in the PageManager control or
programmatically.

o Set the HintFormatter.HintControlID to the Label or Panel control where the hint is shown. When using a
Panel or other containing control, the ID must be to the Panel, not the Label.

o Set the HintFormatter.DisplayMode to Static, if you want to preserve the space used by the Panel or Label
when the hint is not shown. Use Dynamic to avoid using that space.

o If you positioned the Label or Panel in the same space as a validator, set HintFormatter.HiddenOnError to
true.

o Consider if these properties apply: InToolTip, InStatus, FormatterFunctionName, and TextFunctionName.

See “Properties for the PeterBlum.DES.HintFormatter Class”.

 Otherwise, use the LocalHintFormatter property on the control:

o Set the HintFormatter.HintControlID to the Label or Panel control where the hint is shown. When using a
Panel or other containing control, the ID must be to the Panel, not the Label.

o Set the HintFormatter.DisplayMode to Static, if you want to preserve the space used by the Panel or Label
when the hint is not shown. Use Dynamic to avoid using that space.

o If you positioned the Label or Panel in the same space as a validator, set HintFormatter.HiddenOnError to
true.

o Consider if these properties apply: InToolTip, InStatus, FormatterFunctionName, and TextFunctionName.

See “Properties for the PeterBlum.DES.HintFormatter Class”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 156 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Customize the Text of the Hint: The Text Function
You can modify or replace the text of the hint prior to it being displayed. Typically this is used when you want to retrieve
some value from the page and insert it into the text. When replacing a part of the text, a good technique is to use a token, like
“{0}”. Your function can use DES_RERpl() function to replace tokens.

You can also disable hint from showing by returning null from your function.

If you want to fully create the hint text on the client side, you need to set HintManager.AllowBlankHints to true so a
control whose Hint property is "" still gets attached to the hint system.

Your function takes these parameters in the order shown here:

 pFld (object) – The DHTML element to which the hint is attached. The pFld.id attribute is often used to determine
which control is passed to your function. It is the ClientID value of that Control. If this is an <input>, <textarea> or
<select> element, the pFld.value contains its current value.

 pHint (string) - Text of the hint from the Hint or HintLookupID property on the control with the hint. It may contain
HTML tags. It may be blank.

 pErr (Boolean) – When true, there is a validation error on this control. This helps determine how to prepare the hint.

Your function must return one of these values:

 The string used for the hint

 "" if the hint text is not shown but the validation error messages are shown based HintManager.HintsShowErrors.

 null to prevent showing any hint.

See “Adding Your JavaScript to the Page” for instructions on adding JavaScript to the page.

Example

Assumes the hint text is “{0} characters”. Assumes that control is a textbox.

Replaces the token “{0}” with the text length of the control with the hint. If the textbox is blank, it uses an alternative string.
If text length is 1, it returns “1 character”. HintFormatter.TextFunctionName is assigned to “MyHintText”.

<script type="text/javascript" language="javascript">
function MyHintText(pFld, pHint, pErr)
{
 if (pFld.value != "")
 {
 if (pFld.value.length > 1)
 return DES_RERpl(pHint, "{0}", pFld.value.length.toString());
 else
 return "1 character";
 }
 else
 return "Please enter text.";
}
</script>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 157 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Show and Hide the Hint On Demand
Sometimes a third party control has an alternative way to handle the “onfocus” and “onblur” events. (onfocus is called when
focus is set to the control; onblur is called when focus leaves the control.) You can call the DES_ShowHint() and
DES_HideHint() JavaScript functions from within the alternative event handlers of the control.

function DES_ShowHint(pID)

Displays the hint associated with the ID of the control passed. Call it when focus is established, usually in the onfocus event
handler. If that ID is unknown, nothing happens.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_ShowHint('TextBox1');

function DES_HideHint(pID)

Hides the hint associated with the ID of the control passed. Call it when focus is lost, usually in the onblur event handler. If
that ID is unknown, nothing happens.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_HideHint('TextBox1');

Providing an Initialization Function

The HintFormatter object provides the InitFunctionName property for you to establish a function that is called as the page is
setup. Your function will hookup the control’s own onfocus and onblur handlers to call DES_ShowHint() and
DES_HideHint(). The function also returns a boolean value to tell DES whether it should also hookup these functions to
the standard DHTML onfocus and onblur events.

Your function takes one parameter:

 pHO (object) – The “Hint Object”. Its properties associated the hint text with the control and formatters. You will use
one or more of its properties as shown below.

Your function must return true to allow DES to also attach to the standard onfocus/onblur events or false to avoid attaching to
the standard events.

See “Adding Your JavaScript to the Page” for instructions on adding JavaScript to the page.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 158 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Key Properties on the Hint Object (pHO parameter)

 CID (string) – The ID of the control on the page. Call DES_GetById(pHO.CID) to get a reference to its DHTML
object. Pass this value as the parameter of DES_ShowHint and DES_HideHint.

 Fmt (object) – Client-side representation of the HintFormatter object. Its ID property is the ID of the Panel or Label
control on the page where the hint is displayed.

 H (string) – the Hint text. This can also be customized by the TextFunction.

 Hlp (string) - the Hint Help text.

Example

In this ficticious control, Dial1, it expects its property Events.onfocus to contain a string of javascript for the onfocus event. It
expects Events.onblur to contain a string of javascript for the onblur event. HintFormatter.InitFunctionName is assigned to
“InitDial1”.

<script type="text/javascript" language="javascript">
function InitDial1(pHO)
{
 var vDial1 = <% =Dial1.ClientID %>;
 vDial1.Events.onfocus = "DES_ShowHint('" + pHO.CID + "');";
 vDial1.Events.onblur = "DES_HideHint('" + pHO.CID + "');";
 return false; // DES does not need to setup the onfocus/onblur events
}
</script>

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 159 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a Hint to any Control Programmatically:
PeterBlum.DES.Globals.Page.AddHintToControl Method
The PeterBlum.DES.Globals.Page.HintManager.AddHintToControl() method should be called from
Page_Load(). It takes one data entry control and assigns it to a hint. Use it when the control does not have its own Hint,
HintHelp, SharedHintFormatterName or LocalHintFormatter properties and you prefer to work programmatically
instead of using the NativeControlExtender control.

This method is overloaded. Use one when you have a HintFormatter object. Use the other when you are using the
HintManager.SharedHintFormatters list.

[C#]

void AddHintToControl(Control pFocusControl,
 string pHintText, string pHintHelp,
 PeterBlum.DES.HintFormatter pHintFormatter,
 Control pOverrideHintControl)

void AddHintToControl(Control pFocusControl,
 string pHintText, string pHintHelp,
 string pSharedHintFormatterName,
 Control pOverrideHintControl)

[VB]

Sub AddHintToControl(ByVal pFocusControl As Control,
 ByVal pHintText As String, ByVal pHintHelp As String,
 ByVal pHintFormatter As PeterBlum.DES.HintFormatter,
 ByVal pOverrideHintControl As Control)

Sub AddHintToControl(ByVal pFocusControl As Control,
 ByVal pHintText As String, ByVal pHintHelp As String,
 ByVal pSharedHintFormatterName As String,
 ByVal pOverrideHintControl As Control)

Parameters

pFocusControl

The control that is assigned to the hint. It will activate the hint when it receives focus and optionally in a tooltip.

pHintText

The text of the hint. It can contain HTML tags. ENTER and LINEFEED characters are not permitted.

When this text is used in the status bar (InStatusBar property), all HTML tags are stripped.

When "", the control does not show a hint. However, it sets up the hint system in case you are using the
HintFormatter.FormatterFunctionName or HintFormatter.TextFunctionName properties to establish the text.

pHintHelp

When the HintFormatter uses a PopupView, this parameter provides data for use by the PopupView.HelpBehavior
property.

pHintFormatter

The HintFormatter object that describes the appearance of the hint. See “Properties for the
PeterBlum.DES.HintFormatter Class”.

pSharedHintFormatterName

When using a HintFormatter defined in the HintManager.SharedHintFormatters property, this is the name of that
HintFormatter object.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 160 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

pOverrideHintControl

The HintFormatter specifies a HintControlID where the hint appears on the page when DisplayMode is Static
or Dynamic. You can override it with a control specified here. Overriding allows you to share a HintFormatter
object with the exception of its HintControl. (Create one HintFormatter and pass it to this method multiple times.)
When not used, pass null.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 161 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.HintFormatter Class
The PeterBlum.DES.HintFormatter class defines the appearance of a hint. See “Using Interactive Hints”.

 Name (string) – When adding the HintFormatter to the HintManager.SharedHintFormatters collection, this must be
assigned with a unique name (amongst those in the collection). Controls that need hints will assign this name in their
SharedHintFormatterName property to retrieve the HintFormatter.

 DisplayMode (enum PeterBlum.DES.HintDisplayMode) – Determines how the hint is displayed: on screen or in a
popup.

Use Static or Dynamic if you have a control shown on the page to output the hint. Specify the control on the page
with the HintControlID or HintControl properties. See “Defining Hints shown on the Page”.

Use Popup if you want the hint to popup. It uses the PopupView definition in the PopupViewName property. See
“Using PopupViews”.

Only use None when the hint appears in the tooltip and/or status bar, but not in a control on the page or a popup hint.

The enumerated type PeterBlum.DES.HintDisplayMode has these values:

o None – No hint is shown on the page or as a PopupView.

o Static – The control appears on the page in a Label or Panel. When hidden, space is preserved. Assign the
Label or Panel to HintControlID.

o Dynamic – The control appears on the page in a Label or Panel. When hidden, space is not used. Assign the
Label or Panel to HintControlID.

o Popup – A PopupView is used. The PopupViewName property must specify the name of the PopupView
definition.

It defaults to HintDisplayMode.Popup.

 HintControlID (string) – The control where the hint will be shown on the page. It must be assigned when DisplayMode
is Static or Dynamic.

It can either be a Label or a Panel that contains a Label whose ID is the Panel.ID + "_Text". See “Defining Hints shown
on the Page”.

When FormatterFunctionName is assigned, this control is passed into your formatter function and it decides how to
prepare the hint control.

HintControlID must assigned to a control in the same or a parent naming container. For any other naming container, use
HintControl.

It defaults to "".

 HintControl (Control) – This is an alternative to HintControlID. It has the same features as HintControlID. It is
assigned a reference to a control instead of an ID. As a result, it supports controls in any naming container. It must be
assigned programmatically.

When programmatically assigning properties to a HintFormatter, it is better to use HintControl instead of
HintControlID because DES operates faster using HintControl.

 FormatterFunctionName (string) – Assign to the name of a JavaScript function that will be called as the hint control is
shown or hidden. It allows you to customize the HintControl based on conditions at the time the hint is requested. See
“Customize How Hints Appear: The Formatter Function”.

When "", no formatter function is set up. It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 162 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 PopupViewName (string) – Determines which globally defined PopupView is used. Specify the name or use
"{DEFAULT}" to select the name defined globally. See “Using PopupViews”.

Use the Global Settings Editor to edit PopupView definitions. See “Defining PopupViews”.

Here are the predefined values:

LtYellow-Small, LtYellow-Medium, LtYellow-Large, ToolTip-Small, ToolTip-Medium, and
ToolTip-Large.

All of these are light yellow. Their widths vary from 200px to 600px. The ToolTip definitions do not have the callout
feature enabled.

When "{DEFAULT}", it selects the name from the global setting DefaultHintPopupViewName, which is defined in the
Global Settings Editor. For ToolTips on controls that don't have an associate Hint, it selects the name from the global
setting DefaultToolTipPopupViewName, which is defined in the Global Settings Editor.

When "", it uses the factory default PopupView, which is a light yellow style, Width=200px,
PopupView.HelpBehavior=ButtonAppends, and PopupView.DefaultPosition=BottomRightSidesAlign.

When the name is specified here is unknown, it also uses the factory default. This allows the software to operate if the
you change the name of a global value and forget to change the name in this property.

It defaults to "{DEFAULT}".

 OverriddenPopupView (PeterBlum.DES.HintPopupView) – Overrides the value in PopupViewName with an instance
of your own PeterBlum.DES.HintPopupView class to establish the appearance of the popup hint box.

When null, PopupViewName is used.

When assigned, this property is used to establish the appearance of the popup hint message box. See “Properties for the
PeterBlum.DES.HintPopupView Class”.

It defaults to null.

If you want to start with one of the Hint PopupViews defined in the Global Settings Editor, use the
GlobalToOverriddenPopupView() method to set up OverriddenPopupView. Then edit the properties of
OverridePopupView to customize it. See the example below.

Example: Creating a PopupView

[C#]

PeterBlum.DES.HintPopupView vPV = new HintPopupView();
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces;
vPV.Width = new Unit("350px");
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered;
vHintFormatter.OverriddenPopupView = vPV;

[VB]

Dim vPV As PeterBlum.DES.HintPopupView = New HintPopupView()
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces
vPV.Width = New Unit("350px")
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered
vHintFormatter.OverriddenPopupView = vPV

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 163 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: Using GlobalToOverriddenPopupView() method

The HintFormatter.GlobalToOverriddenPopupView() method populates the OverriddenPopupView
based on a PopupView defined in the Global Settings Editor. It has one parameter, the name of the PopupView. It
returns an instance of the PopupView, which you can edit. You don’t need to assign it to OverriddenPopupView.

[C#]

PeterBlum.DES.HintPopupView vPV =
 vHintFormatter.GlobalToOverriddenPopupView("MyPopupView");
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces;
vPV.Width = new Unit("350px");
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered;

 [VB]

Dim vPV As PeterBlum.DES.HintPopupView = _
 vHintFormatter.GlobalToOverriddenPopupView("MyPopupView")
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces
vPV.Width = New Unit("350px")
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered

 InStatusBar (Boolean) – When true, the hint text appears in the browser’s status bar. When false, it does not.

HTML tags in the hint text are stripped before showing it in the status bar.

It defaults to false.

 InToolTip (Boolean) – When true, show the Hint as the tooltip, but only if the ToolTip (and ToolTipLookupID)
property on the control is empty. It defaults to true.

Since the tooltip is not activated by focus on the control, its text is static, not influenced by HiddenOnError. It will strip
out HTML tags found in the Hint property automatically.

 HiddenOnError (Boolean) – When true, do not show the hint in the hint control when any Validator attached to this
TextBox reports an error “inline” or is showing its NoErrorFormatter. It defaults to false.

This allows the user to place the hint control in the same location as a Validator. Recommendation: Set DisplayMode to
Dynamic.

This property has no effect on showing the hint in the status bar because it never conflicts with a Validator on the page. It
has no effect if the validator has its ErrorFormatter.Display property set to None and is not using the
NoErrorFormatter.

Validation errors can also be blended into the Hint Control using the HintManager.HintsShowErrors property. (See
the next section.) When HiddenOnError is true, it overrides HintManager.HintsShowErrors.

 TextFunctionName (string) – Assign to the name of a JavaScript function that customizes the hint text before the hint is
shown. See “Customize the Text of the Hint: The Text Function”.

When "", no text function is set up. It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

 InitFunctionName (string) – Assign to the name of a JavaScript function that establishes the onfocus and onblur events
of a custom control so they call DES_ShowHint() and DES_HideHint(). See “Show and Hide the Hint On
Demand”.

When "", no initialization function is set up. It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 164 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties on the PeterBlum.DES.Globals.Page.HintManager Property
The following properties are on the HintManager property of the PageManager control and PeterBlum.DES.Globals.Page
object. You set them in the Page_Load() method. You can also set global default values for these properties using the
Global Settings Editor. Each property will identify the name to set in the Global Settings Editor.

 SharedHintFormatters (PeterBlum.DES.HintFormattersList) – A collection of HintFormatters shared by the controls
on this page.

This list is optional. Controls specify the name of a HintFormatter from this list in their SharedHintFormatterName
property.

Each HintFormatter must have its Name property assigned and each must have a unique name within the list.

This list can optimize a page because it reduces the amount of javascript written. Instead of one HintFormatter per
control, there is one for a group of controls.

It also makes a centralized place for the formatting definitions, so you can make a change in one place and affect all
associated controls.

See “Adding HintFormatters to the SharedHintFormatters Property”.

 HintsShowErrors (enum PeterBlum.DES.HintsShowErrors) – Determines if error messages are shown in the Hint
Control. The enumerated type PeterBlum.DES.HintsShowErrors has these values:

o Hint – Show only the hint text. If there is no hint text, nothing is shown.

o OneErrorAndHint – Show the error message of first validator reporting an error and the hint text.

o AllErrorsAndHint – Show all error messages of all validators reporting an error and the hint text.

o OneError – Show the error message of first validator reporting an error. The hint text is not shown.

o AllErrors – Show all error messages of all validators reporting an error. The hint text is not shown.

It defaults to the DefaultHintsShowErrors property in the Global Settings Editor, which defaults to
HintsShowErrors.Hint.

 HintsShowErrorsCssClass (string) – When showing error messages in the Hint Control, use this to change the style
sheet class name of the entire Hint Control. For example, change the background color to make it obvious that it’s
showing an error.

When "", it is not used.

It defaults to the DefaultHintsShowErrorsCssClass property in the Global Settings Editor, which defaults to "".

 HintsShowErrorsCssClass2 (string) – When showing error messages in the Hint Control, use this to change the style
sheet class name of the text for error messages. This does not effect the overall Hint Control’s style nor the hint text, if
not shown. It helps make the error messages stand out from the hint text.

When "", it is not used.

It defaults to the DefaultHintsShowErrorsCssClass2 property in the Global Settings Editor, which defaults to "".

 HintsShowErrorsSeparator (string) – When showing error messages in the Hint Control, there may be several pieces
of text joined together. This provides text that goes between the text. Since this will appear on a web page, use HTML
for formatting like spaces (“nbsp;”) and newline (“
”).

It defaults to the DefaultHintsShowErrorsSeparator property in the Global Settings Editor, which defaults to
" ".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 165 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ToolTipsAsHints (enum PeterBlum.DES.TrueFalseDefault) – When a control has its ToolTip property assigned and its
Hint property unassigned, setup a Hint with the same text as the ToolTip. By default, this feature is enabled.

This feature does not apply to every control. It is limited to data entry controls, where focus can be established. For all
other controls, you must explicitly setup the Hint property. Supported control types: TextBox, ListBox, DropDownList,
RadioButtonList, CheckBoxList, RadioButton, CheckBox, and any control that supports the ValidationPropertyAttribute
(which allows many third party controls to be included.)

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True – ToolTips are used as hints.

o False – Do not use ToolTips as hints.

o Default – Determine if ToolTips are used as Hints from the global setting DefaultToolTipsAsHints, defined
in the “HintManager Defaults” section of the Global Settings Editor. The global default is true.

It defaults to TrueFalseDefault.Default.

 AllowBlankHints (Boolean) – Normally hints are not created if the hint text is blank. This sets up the control to use a
hint, when its hint text is blank. Used when you use the HintFormatter.TextFunctionName property.

It defaults to false.

 PopupOnFocusDelay (Integer) - When using a PopupPopup for a hint, this is the time delay between when the focus
enters the control until it pops up.

The value is in milliseconds.

If 0, it pops up immediately.

It defaults to 350 (>1/3 second).

 EnableToolTipsUsePopupViews (enum PeterBlum.DES.TrueFalseDefault) – Enables displaying tooltips in
PopupViews. See “Enhanced ToolTips”. By default, this feature is disabled.

When enabled, controls that are using hints, tooltips or the NativeControlExtender can switch from the standard browser
tooltip to a PopupView defined in the Hints system.

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True – Enable the Enhanced ToolTips feature.

o False – Do not use the Enhanced ToolTips feature. ToolTips are defined by the browser’s standard tooltip
mechanism.

o Default – Determine if the feature is enabled from the global setting
DefaultEnableToolTipsUsePopupViews, defined in the “HintManager Defaults” section of the Global
Settings Editor. The global default is false.

It defaults to TrueFalseDefault.Default.

 HintShowTextCounterSeparator (string) – Used with by TextCounter control to establish a separator between the
actual hint text and the text from the TextCounter message.

It defaults to the DefaultHintsShowTextCounterSeparator property in the Global Settings Editor, which defaults
to “
”.

If you want the TextCounter message to appear first, use the token “{~}” as the first element of the
HintShowTextCounterSeparator property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 166 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for the PeterBlum.DES.HintPopupView Class
The PeterBlum.DES.HintPopupView class contains a PopupView definition. You normally edit these in the Global
Settings Editor. You can also create them for use with the HintFormatter.OverriddenPopupView property.

See “Defining PopupViews”.

Click on any of these topics to jump to them:

 Overall Appearance Properties

 Header Properties

 Body Properties

 Footer Properties

 Callout Properties

 Positioning Properties

 Other Properties

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 167 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Overall Appearance Properties
 CssClass (string) – The Cascading Style Sheet name that is applied to the overall control. Use to define the background

and border.

It defaults to “DES_PHOverallLtYellow”.

These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

.DES_PHOverallLtYellow
{
 border-right: black 1px solid;
 border-top: black 1px solid;
 border-left: black 1px solid;
 border-bottom: black 1px solid;
 font-family: Arial;
 font-size: 8pt;
 color: Black;
 background-color: #ffffe0; /* lightyellow */
}
/* default font for all nested tables in the control */
.DES_PHOverallLtYellow TABLE
{
 font-family: Arial;
 font-size: 8pt;
}

/* prevent external img styles from affecting these styles */
.DES_PHOverallLtYellow img
{
 background-color:transparent;
 margin-left: 0px;
 margin-top: 0px;
 margin-bottom:0px;
 margin-right:0px;
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:

DES_PHOverallLtBlue

DES_PHOverallLtGray

DES_PHOverallLtRed

 Width (System.Web.UI.WebControls.Unit) – The width of the PopupView (excluding any callouts). The width is a
fixed value. The height varies based on hint text.

Create different width PopupView definitions for any appearance you want.

It defaults to 200px.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 168 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Header Properties

 HeaderTitle (string) – Optional text shown in the header. It supports HTML.

When "", no title is offered. The header is hidden if also ShowCloseButton is false.

It defaults to "".

 HeaderTitleLookupID (string) – Gets the value for HeaderTitle through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HeaderTitle will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HeaderHorizontalAlign (enum System.Web.UI.WebControls.HorizontalAlign) – The alignment of contents of the
header.

It defaults to HorizontalAlign.Left.

 HeaderCssClass (string) – The Cascading Style Sheet name that is applied to the header.

It defaults to “DES_PHHeaderLtYellow”.

This style is declared in DES/Appearance/Interactive Pages/PopupHints.css:

.DES_PHHeaderLtYellow
{
 background-color: #ffff99; /* darker version of LightYellow */
 font-size: 8pt;
/* add this if you allow dragging and want to emphasize that fact
 cursor: move;
*/
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:

DES_PHHeaderLtBlue

DES_PHHeaderLtGray

DES_PHHeaderLtRed

 ShowCloseButton (Boolean) – Show the Close button in the header, on the right side. It will use CloseButtonImageUrl
or CloseButtonText to determine its appearance. If CloseButtonImageUrl is assigned, an image is shown. If
CloseButtonImageUrl is "", a hyperlink is shown using the CloseButtonText.

It defaults to true.

 CloseButtonImageUrl (string) – The Url to an image for the Close Button.

If supplied, an image is shown with the tooltip and Image Alt= text from CloseButtonText.

It defaults to "{APPEARANCE}/Shared/CloseCmd.gif" ().

DES also includes this image: To use it, assign CloseButtonImageUrl to
"{APPEARANCE}/Shared/CloseCmd2.gif".

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.horizontalalign.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 169 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The CloseButtonImageUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the
URL is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 CloseButtonText (string) – The text for the Close Button. When CloseButtonImageUrl is used, this is the alternative
text for the image.

When CloseButtonImageUrl is "", this is the text of a hyperlink.

It defaults to "[x]".

 CloseButtonTextLookupID (string) – Gets the value for CloseButtonText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of PopupViews. If no match is found OR this is blank, CloseButtonText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 CloseButtonCssClass (string) – The Cascading Style Sheet name that is applied to the Close Button in the header.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will overrided properties in this, but not the entire style.

If blank, it is not used.

It defaults to “DES_CloseButtonLtYellow”.

These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

.DES_CloseButtonLtYellow
{
 cursor: default;
 color: #696969; /* dimgray */
 font-size:8pt;
 background-color:White;
}
.DES_CloseButtonLtYellowPressed
{
 color: black;
}
.DES_CloseButtonLtYellowMouseOver

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 170 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

{
 color: #a9a9a9; /* darkgray */
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PHCloseButtonLtBlue

DES_PHCloseButtonLtGray

DES_PHCloseButtonLtRed

 CloseButtonToolTip (string) – The ToolTip for the Close button.

It defaults to “Close”.

 CloseButtonToolTipLookupID (string) – Gets the value for CloseButtonToolTip through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within
the String Group of PopupViews. If no match is found OR this is blank, CloseButtonToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 171 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Body Properties

 BodyCssClass (string) – The style sheet class name used for the body. It contains the text of the hint, so use it to
establish the font of the hint and margins around that text.

It defaults to “DES_PHBodyLtYellow”.

These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

.DES_PHBodyLtYellow
{
 cursor: default;
 margin-left: 5px;
 margin-right: 5px;
 margin-bottom: 5px;
}

/* when using HelpBehavior=ButtonAppend, the HelpSeparator
may contain an <hr> tag. This helps set its style. */
.DES_PHBodyLtYellow hr
{
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PHBodyLtBlue

DES_PHBodyLtGray

DES_PHBodyLtRed

 BodyImageUrl (string) – The Url to an image that appears to the left of the message text in the body.

If supplied, it appears to the left of the message text using a two column table. Use BodyImageVerticalAlign to
determine how the image is positioned within its table cell.

There is a global default in the DefaultHintPopupViewBodyImageUrl property of the Global Settings Editor.
Assign BodyImageUrl to “{DEFAULT}” to use the global default. It is unassigned by default.

It defaults to "{DEFAULT}".

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The BodyImageUrl property should refer to the normal image. DES will detect the presence of the other two files. If any
are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL is a
virtual path to a file. You can manage this capability with the PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 172 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 BodyImageVerticalAlign (enum System.Web.UI.WebControls.VerticalAlign) – The vertical alignment of the image
identified by BodyImageUrl.

It defaults to VerticalAlign.Top

 HTMLBefore (string) – Include HTML that appears before the hint text.

It defaults to ""

 HTMLBeforeLookupID (string) – Gets the value for HTMLBefore through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HTMLBefore will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HTMLAfter (string) – Include HTML that appears after the hint text.

It defaults to ""

 HTMLAfterLookupID (string) – Gets the value for HTMLAfter through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HTMLAfter will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 173 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Footer Properties

 HelpButtonImageUrl (string) – The Url to an image for the Help Button.

If supplied, an image is shown with the image’s Alt= text from HelpButtonText.

It defaults to "". DES includes a Help button image in “{APPEARANCE}/Shared/HelpCmd.gif" ().

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 The HelpButtonImageUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the
URL is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

 HelpButtonText (string) – The text for the Help Button. When HelpButtonImageUrl is used, this is the alternative text
for the image.

When HelpButtonImageUrl is "", this is the text of a hyperlink.

It defaults to "More".

 HelpButtonTextLookupID (string) – Gets the value for HelpButtonText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of PopupViews. If no match is found OR this is blank, HelpButtonText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HelpButtonCssClass (string) – The Cascading Style Sheet name that is applied to the Help Button in the footer.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will overrided properties in this, but not the entire style.

If blank, it is not used.

It defaults to “DES_PHHelpButtonLtYellow”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 174 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

.DES_PHHelpButtonLtYellow
{
 cursor: default;
 color: #696969; /* dimgray */
 font-size:8pt;
 text-decoration:underline;
}
.DES_PHHelpButtonLtYellowPressed
{
 color: black;
 text-decoration:underline;
}
.DES_PHHelpButtonLtYellowMouseOver
{
 color: #a9a9a9; /* darkgray */
 text-decoration:underline;
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PHHelpButtonLtBlue

DES_PHHelpButtonLtGray

DES_PHHelpButtonLtRed

 FooterCssClass (string) – The Cascading Style Sheet name that is applied to the footer.

It defaults to “DES_PHFooterLtYellow”.

This style is declared in DES/Appearance/Interactive Pages/PopupHints.css:

.DES_PHFooterLtYellow
{
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:

DES_PHFooterLtBlue

DES_PHFooterLtGray

DES_PHFooterLtRed

 FooterHorizontalAlign (string) – (enum System.Web.UI.WebControls.HorizontalAlign) – The alignment of contents of
the footer.

It defaults to HorizontalAlign.Right.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.horizontalalign.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 175 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Callout Properties
See “Creating your own Callouts” and “Adding your own Callouts to the PopupView Definition”.

 EnableCallouts (Boolean) – When true, the callout graphics are added. Only one appears at a time, based on the
positioning of the messagebox.

A callout is a graphic inserted between the positioning control and the PopupView to make the entire presentation look
like a callout in a cartoon.

Requires CalloutUrls and CalloutOffsets to be defined.

NOTE: When set, the UseShadowEffect property is ignored because it generates a poor appearance with callouts.

It defaults to true.

 CalloutUrlFolder (string) – The URL to folder that contains four image files for the callouts. The files must be
transparent gifs with the names: Left.gif, Top.gif, Right.gif, and Bottom.gif.

There are several predefined callout folders, each with a set of images that work together with the predefined style sheets
in DES/Appearance/Interactive Pages/PopupHints.css. They are:

{APPEARANCE}/Shared/Callouts/AliceBlue
{APPEARANCE}/Shared/Callouts/LtRed
{APPEARANCE}/Shared/Callouts/LtBlue
{APPEARANCE}/Shared/Callouts/LtYellow
{APPEARANCE}/Shared/Callouts/LtGray
{APPEARANCE}/Shared/Callouts/Mistyrose

If you define your own, images use transparency and must be a gif file format. See “Creating your own Callouts”.

Always define the size of these images using CalloutTopBottomSize and CalloutLeftRightSize. The sizes of the
predefine callout files predefined in these properties: 20 tall and 12 wide.

It defaults to “{APPEARANCE}/Shared/Callouts/LtYellow” which has these images:

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 CalloutLeftRightSize (System.Drawing.Size) – The actual width and height of the Left.gif and Right.gif images defined
in CalloutUrlFolder. It is used in positioning the PopupView box. As a result, if it’s slightly larger, the entire callout
will be moved away from the target. If it’s smaller, it will overlap the PopupView box.

If you have a border around the PopupView box and the outside edges of the callout, subtract the number of pixels used
to make the border.

It defaults to Width=19 and Height=12.

 CalloutTopBottomSize (System.Drawing.Size) – The actual width and height of the Top.gif and Bottom.gif images
defined in CalloutUrlFolder. It is used in positioning the PopupView box. As a result, if it’s slightly larger, the entire
callout will be moved away from the target. If it’s smaller, it will overlap the PopupView box.

If you have a border around the PopupView box and the outside edges of the callout, subtract the number of pixels used
to make the border.

http://msdn2.microsoft.com/en-us/library/system.drawing.size.aspx�
http://msdn2.microsoft.com/en-us/library/system.drawing.size.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 176 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

It defaults to Width=12 and Height=19.

 CalloutOffsetIntoAnchorPercent (integer) – Determines how much to offset the callout into the body of the anchor
control - the control that the callout points to. It is a percentage where 0 is the top or left and 100 is the bottom or right.

Generally avoid using values near 100 as the callout may exceed the boundaries of the PopupView.

It defaults to 50 (percent).

 CalloutOffsetAlongSide (integer) – Determines the minimum offset for the callout from the nearest corner so it is not
flush with that corner. The value is in pixels.

It defaults to 10 (pixels).

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 177 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Positioning Properties
 DefaultPosition (enum PeterBlum.DES.PopupViewPosition) – Positions the PopupView relative to the target control.

At runtime, the position may change if the PopupView either overlaps the target control or the limits of the viewable
space.

Use HorizPositionOffset and VerticalPositionOffset to offset from the selected position by a specific number of pixels.

The enumerated type PeterBlum.DES.PopupViewPosition has these values:

o LeftCentered - Horizontal alignment: Left of the target. Vertical alignment: Centered

o LeftTopsAlign - Horizontal alignment: Left of the target. Vertical alignment: top of target aligns with top
of popup view

o RightCentered - Horizontal alignment: Right of the target. Vertical alignment: Centered

o RightTopsAlign - Horizontal alignment: Right of the target. Vertical alignment: top of target aligns with
top of popup view

o BottomCentered - Horizontal alignment: Centered. Vertical alignment: Below the target

o BottomLeftSidesAlign - Horizontal alignment: Left sides of popup and target align. Vertical alignment:
Below the target

o BottomRightSidesAlign - Horizontal alignment: Right sides of popup and target align. Vertical
alignment: Below the target

o TopCentered - Horizontal alignment: Centered. Vertical alignment: Above the target

o TopLeftSidesAlign - Horizontal alignment: Left sides of popup and target align. Vertical alignment:
Above the target

o TopRightSidesAlign - Horizontal alignment: Right sides of popup and target align. Vertical alignment:
Above the target

It defaults to PopupViewPosition.BottomRightSidesAlign.

 HorizPositionOffset (short) – Adjusts the Horizontal position of the popup by a number of pixels to allow more precise
positioning for DefaultPosition.

If negative, the popup panel moves left. Positive moves right. Zero does nothing.

It defaults to 5.

 VertPositionOffset (short) – Adjusts the vertical position of the popup by a number of pixels to allow more precise
positioning for DefaultPosition.

If negative, the popup panel moves up. Positive moves down. Zero does nothing.

It defaults to 5.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 178 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Other Properties
 HelpBehavior (enum PeterBlum.DES.HelpBehavior) – Determines how the HintHelp property (on the control with the

hint) is used.

The enumerated type PeterBlum.DES.HelpBehavior has these values:

o None – Do not use HintHelp. Do not show a Help Button.

o ButtonAppends – Use the Help Button. When clicked, redraw with the HintHelp text appended to the
current text. The value of PopupView.AppendHelpSeparator is inserted between the original hint and the text
of HintHelp.

o ButtonReplaces – Use the Help Button. When clicked, redraw with the HintHelp text replacing the current
text.

o Title – The HintHelp text appears in the header as the title. It is used instead of the PopupView.HeaderText
property value. There is no Help Button.

o Hyperlink – Use the Help Button that acts as a hyperlink. Define the URL in the
HyperlinkUrlForHelpButton property. The HintHelp text will appear in the “{0}” token.

o HyperlinkNewWindow – Use the Help Button that acts as a hyperlink which opens in a new window.
Define the URL in the HyperlinkUrlForHelpButton property. The HintHelp text will appear in the “{0}”
token.

o Script – Runs the script supplied in the ScriptForHelpButton property. The HintHelp text will replace the
token “{0}” in that script.

It defaults to HelpBehavior.ButtonAppends.

 HyperlinkUrlForHelpButton (string) – Used when HelpBehavior is Hyperlink or HyperlinkNewWindow. It
defines the URL of the Hyperlink.

Create a full URL that will be used in the href= attribute of the A tag. It can contain the token "{0}" to be replaced by the
HintHelp value of the control requesting your PopupView. That token is used to differentiate elements of URLs, such as
the page or querystring parameter. For example:

http://www.mywebsite.com/help?helpid={0}

The entire value can be "{0}" if the HintHelp value contains the complete URL.

It defaults to "{0}".

 ScriptForHelpButton (string) – Used when HelpBehavior is Script. It defines the script to invoke when the button is
clicked.

The token "{0}" is replaced by the HintHelp text. Use it to customize the script. For example:

alert('{0}');

WARNING: When the token is inside a string, like in the above example, the HintHelp property should not contain the
same quote characters that enclose the string. For example, the text “Peter’s Software” is illegal. It will cause a
JavaScript error.

This script should be valid javascript. It should not start with "javascript:".

It defaults to "".

 AppendHelpSeparator (string) – Used when HelpBehavior is ButtonAppends. It is inserted between the initial text
and the help text.

It supports HTML.

Typical separators are
 and <hr />.

It defaults to “<hr />”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 179 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 Draggable (enum PeterBlum.DES.PopupViewDraggable) – Determines if the user can drag the popupview.

The enumerated type PeterBlum.DES.PopupViewDraggable has these values:

o No - It is not supported.

o Header - Only by dragging the header area, like a title bar

o All - All elements, except buttons, are draggable.

It defaults to PopupViewDraggable.Header.

 UseOpaqueEffect (Boolean) – When true and on a browser that supports Opacity, the entire view is slightly opaque to
show its underlying info at various times.

Rules for opacity:

o When the mouse moves over the PopupView, it immediately brightens in about .5 second.

o When the mouse leaves the PopupView, it starts to dim after 2 seconds and finishes .5 seconds later.

o When focus is placed into a control that shows the PopupView, it brightens in about .5 second and stays that
way until focus changes. Usually the only way to do that is clicking the Help button.

It defaults to true.

Changing the Opacity Behaviors

Opacity behaviors can be adjusted in the “Visual Effects” topic of the Global Settings Editor with these properties:

o MinimumOpaquePercent (integer) – When UseOpaqueEffect is true on a PopupView definition, this is the
value of opacity used as the minimum opacity.

Opacity has a range between 10 and 99, which represents a percentage of opacity. 100 is solid. 0 is transparent.

It defaults to 90.

o MaximumOpaquePercent (integer) – When UseOpaqueEffect is true on a PopupView definition, this is the
value of opacity used as the maximum opacity.

Opacity has a range between 10 and 99, which represents a percentage of opacity. 100 is solid. 0 is transparent.

It defaults to 100.

o OpaqueFadeDelay (integer) – When UseOpaqueEffect is true on a PopupView definition, this is the
number of milliseconds before fading begins.

The value is in milliseconds.

If 0, it fades immediately.

It defaults to 2000 (2 seconds).

 UsePopupEffect (Boolean) – When using Internet Explorer for Windows 5 and higher, this applies an animation to the
opening and closing of the popup. It uses the Filters feature which are set up globally.

When true and Internet Explorer is in use, filters are applied.

It defaults to true.

 UseShadowEffect (Boolean) – When true and on Internet Explorer 5.5+ for Windows, a shadow effect is applied.

If Callouts are used, this property is ignored because Callouts perform poorly with shadows.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 180 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 IEFixPopupOverList (Boolean) – Internet Explorer for Windows versions 5.0 through 6. have a problem allowing
absolutely positioned objects appearing over ListBox and DropDownLists. There is a special hack that uses an IFrame
and filter style sheet to make it appear like it’s over these controls. This property enables that hack on IE versions 5.5-6.
(IE 5 doesn't support the hack; IE 7 doesn't require the hack.)

The hack is imperfect. It breaks when another IFrame is in the same area of the page. By "breaks", this means the popup
usually looks incorrect including being transparent.

When the ASP.NET SmartNavigation feature is enabled on the page, it installs an IFrame and causes the same problem.

If the problem is affecting the PopupView, set the UseShadowEffect property to false.

Turn off the hack to work around this problem. Set this property to false. But you should only do this when the popup
does not overlap any listboxes or dropdownlists. If there is overlap, you have to make a design decision to change your
positioning or avoid using the IFrame.

When true, the hack is used when the browser is Internet Explorer for Windows versions 5.5 through 6..

When false, the hack not used. Choose this when the hack causes visual problems such as a transparent popup.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 181 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Enhanced ToolTips
The browser provides the ToolTip to describe almost any field as the mouse passes over it. That tooltip is very limited. For
most browsers, it cannot be multiline. It has one style (yellow). It cannot support HTML.

Using the same PopupView feature found in DES’s Interactive Hints and the DES Validator’s PopupErrorFormatter, DES
gives you a better tooltip. You control its appearance and supply it with HTML to convey the information better.

See “Defining PopupViews”.

Note: The terms “Hint” and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the
message when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse
points to the control. It can be used on almost any type of control.

Click on any of these topics to jump to them:

 Features

 Using Enhanced ToolTips

 HintManager.AddToolTipPopupViewToControl() method

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 182 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
 Can be attached to almost any control. DES controls automatically use them when the feature is activated. Non-DES

controls get them through the NativeControlExtender or programmatically.

 Appears as the mouse passes over a control. Is removed as the mouse leaves (after a short delay). One difference from
the browser’s tooltip is that the user can move the mouse onto the tooltip and it will remain visible even though the
mouse is outside the control. This lets the text be visible without the mouse hiding a part of the control.

 The PopupView element containing the tooltip text will does not overlap the control (except in extreme circumstances).
It positions itself to one side. If there isn’t enough screen space for your preferred side, it chooses another side.

 Uses the PopupView feature from Interactive Hints which means:

o Style-sheet driven, allowing color and other appearance changes

o The text of the tooltip supports HTML formatting

o It’s easy to add an image to the left of the message with the PopupView.BodyImageUrl property

o Supports Callouts.

o Draggable

o Optional title bar

o Optional close box

o The same PopupView definitions can be used for both Interactive Hints and ToolTips

 With a single property setting, all DES controls and controls using the NativeControlExtender can be switched to using
PopupViews. Set HintManager.EnableToolTipsUsePopupViews to TrueFalseDefault.True or set it globally
in the Global Settings Editor with the DefaultEnableToolTipsUsePopupViews property.

 When using Interactive Hints, that feature optionally sets up the hint as a tooltip. If the Popup ToolTip feature is enabled,
that hint uses the same PopupView definition as the hint (in HintFormatter.PopupViewName).

 If the browser does not support the scripts needed for the Popup ToolTip feature or javascript is disabled, it scales down
gracefully to using the standard browser tooltip.

Use demos here: http://www.peterblum.com/DES/DemoToolTips.aspx.

http://www.peterblum.com/DES/DemoToolTips.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 183 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using Enhanced ToolTips
Use demos here: http://www.peterblum.com/DES/DemoToolTips.aspx.

The Popup ToolTip feature gets the text for a tooltip from either a control’s ToolTip property or its Hint property (if the
Interactive Hints feature is in use an the HintFormatter for that control has InToolTip set to true).

The setup is easy:

 Assign text for your tooltip messages

 Activate the Enhanced ToolTips feature

 Determine the desired appearance for ToolTips

Here are the details:

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. DES controls are “Enhanced ToolTips Ready”. Add the NativeControlExtender control to any non-DES control that
needs a Popup ToolTip. See the General Features Guide for the NativeControlExtender control.

Alternatively, use the HintManager.AddToolTipPopupViewToControl() method. See below.

2. Assign the text for your tooltip messages. There are three possible cases:

 When using Interactive Hints, use the text from the control’s Hint property. Be sure the control’s
HintFormatter.InToolTip property is true.

Note: The HintHelp property is not used on Enhanced ToolTips. PopupView.HelpBehavior is ignored.

 Assign the text to the ToolTip property of the control.

 If the control does not have a ToolTip property (such as an HtmlControl like), use
the ToolTip property on the NativeControlExtender.

3. Activate the Enhanced ToolTips feature either for the page or globally.

 For the page, set HintManager. EnableToolTipsUsePopupViews to TrueFalseDefault.True on either
PeterBlum.DES.Globals.Page or the PageManager control.

 Globally, set the DefaultEnableToolTipsUsePopupViews property to true in the “HintManager Defaults” section
of the Global Settings Editor.

4. There are several sources that determine which PopupView is used for your ToolTip.

 The Interactive Hints feature determines the PopupView definition for
any control using PopupViews as Hints.

 Many DES controls provide the ToolTipUsesPopupViewName
property to assign the PopupView definition name.

 There is a global default. Specify a PopupView definition name in the
DefaultToolTipPopupViewName property in the “HintManager
Defaults” section of the Global Settings Editor. See “Defining
PopupViews”.

It is used by controls that do not have the
ToolTipUsesPopupViewName property and those whose
ToolTipUsesPopupViewName property is set to the “{DEFAULT}”
token.

http://www.peterblum.com/DES/DemoToolTips.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 184 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

HintManager.AddToolTipPopupViewToControl() method
Use with any non-DES control to convert its standard tooltip to a PopupView. It is an alternative to using the
NativeControlExtender control. If this function is called while HintManager.EnableToolTipsUsePopupViews is false,
nothing happens.

This method is overloaded.

[C#]

void AddToolTipPopupViewToControl(Control pControlWithToolTip,
 string pPopupViewName)

void AddToolTipPopupViewToControl(Control pControlWithToolTip,
 PeterBlum.DES.HintPopupView pPopupView)

 [VB]

Sub AddToolTipPopupViewToControl(ByVal pControlWithToolTip As Control,
 ByVal pPopupViewName As String)

Sub AddToolTipPopupViewToControl(ByVal pControlWithToolTip As Control,
 ByVal pPopupView As PeterBlum.DES.HintPopupView)

Parameters

pControlWithToolTip

The control whose tooltip will be replaced. If this control is Visible=false or its ToolTip property is unassigned,
nothing happens.

pPopupViewName

The name of a Hint PopupView defined globally and will be the PopupView for the tooltip. If "", it uses the global
property DefaultToolTipPopupViewName which is set in the “HintManager Defaults” topic of the Global
Settings Editor.

pPopupView

A PeterBlum.DES.HintPopupView object that defines the PopupView. See “Properties for the
PeterBlum.DES.HintPopupView Class”. If you assign its Name property, it will be used more efficiently so all that
have this name will use a common definition.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 185 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

TextCounter Control
The TextCounter control displays the number of characters or words within a textbox. It
assists users when there are limits to the size of text they can enter. It compliments, but does
not replace the TextLengthValidator/WordCountValidator, because it does not impose a limit.
It merely communicates the count and if a limit is exceeded.

The user interface of the TextCounter can be like an interactive label control. It also can present itself in the Hint feature of
DES TextBoxes.

Click on any of these topics to jump to them:

 Features

 Using the TextCounter Control

 Connecting To a TextBox

 Establishing the Limits

 Setting the Text and Style Sheets

 Adding a TextCounter Control

 Properties of the TextCounter Control

Features
Use demos here: http://www.peterblum.com/DES/DemoTextCounter.aspx.

 Evaluates the size of the text as compared to a maximum and possibly a minimum.

 Evaluates either the number of characters or the number of words

 Its text and optionally style sheet changes as the text size changes:

o Below the minimum

o Between the minimum and the next milestone

o At or above a milestone prior to the maximum, such as 20 characters left

o At or above a second milestone prior to the maximum, such as 10 characters left, to allow further emphasis that
the user is reaching the maximum

o Above the maximum

 The text shown supports tokens that can be replaced by the current count, minimum, maximum, and how much it
exceeds the maximum.

 It can be shown on the page like a label and/or in the Interactive Hints feature. When in a Hint, it is hidden except when
focus is on the textbox.

 It can change the style sheet of the textbox as the length crosses the maximum. It uses the same style sheet feature as
validators do for their “Change Style on Control with Error” feature. It will also hide the TextLengthValidator error
message if the length is below the maximum.

http://www.peterblum.com/DES/DemoTextCounter.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 186 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the TextCounter Control
Use demos here: http://www.peterblum.com/DES/DemoTextCounter.aspx.

Click on any of these topics to jump to them:

 Connecting To a TextBox

 Establishing the Limits

 Setting the Text and Style Sheets

 Tokens in Messages

Connecting To a TextBox
Attach the TextCounter control to a textbox by specifying the textbox’s ID in the TextBoxControlID property.

Determine where you want the TextCounter to display its information with the DisplayMode property. It can act like a Label
control, where it displays the current count text in the location of the TextCounter control. It can also integrate itself with the
Interactive Hints feature on the TextBox. The Interactive Hints feature can display the text in a label on the page or in a
PopupView. In both cases, the text is not shown unless the textbox has focus.

When DisplayMode uses the Interactive Hint feature, use the HintManager.HintShowTextCounterSeparator property to
describe the HTML that separates the hint text from the textcounter message. It defaults to “
”. If you want the
textcounter message to appear first, use the token “{~}” as the first element of the
HintManager.HintShowTextCounterSeparator property. The HintManager is available on the PageManager control and
on the PeterBlum.DES.Globals.Page object.

Determine if it counts characters or words with the CountType property. When counting words, a word is considered any
sequence of letters, digits, underscores, and single quotes (handles contractions and possessive nouns). Everything else is
considered whitespace.

http://www.peterblum.com/DES/DemoTextCounter.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 187 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Establishing the Limits
While you can establish a minimum and maximum within the TextCounter’s Minimum and Maximum properties, the
TextCounter can get these values for you by looking in two places:

 If you have a TextLengthValidator or WordCountValidator attached to the textbox (and you should!), the validator
supplies the limits.

 The MaxLength property on the TextBox control.

You can also establish two milestones before reaching the Maximum in Milestone1 and Milestone2. When reached, the
message and/or the style sheet class can switch. This allows a visual escalation as the user nears the Maximum. Milestones
are the number of characters before the end. Milestone2 defaults to 10, so it will change the message and/or style sheet from
10 characters before the maximum until the maximum is reached. Milestone1 is not setup by default.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 188 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Setting the Text and Style Sheets
This control’s job is to communicate to the user that they are in a textbox that has a size limit, and how their entry is affected
by that limit. To do this job, it can change the text and style sheet as the user gets close to the maximum. There are 6 cases:

 No maximum defined. This eliminates most of the remaining cases.

 Below the minimum. Only used when there is a minimum defined.

 Between the minimum and Milestone1

 Milestone1: At or above a milestone prior to the maximum, such as 20 characters left. Milestone1 is defined in the
Milestone1 property as the number of characters or words BEFORE the maximum.

For example, if the maximum is 100 and you want to change the message or style sheet at 60 characters, set
Milestone1 to 40 (100 – 60).

 Milestone2: At or above a second milestone prior to the maximum, such as 10 characters left, to allow further
emphasis that the user is reaching the maximum. Milestone2 is defined in the Milestone2 property as the number of
characters or words BEFORE the maximum.

For example, if the maximum is 100 and you want to change the message or style sheet at 90 characters, set
Milestone1 to 10 (100 – 90).

 Above the maximum

Each has its own text, style sheet class, and second style sheet class to differentiate the count (a token) from the rest of the
text. The style sheet classes are in DES\Appearance\Interactive Pages\TextCounter.css. Here is where to edit the
text and style sheet classes for each case:

Case Property for the Text Style Sheet Class Tokens Style Sheet Class

No maximum defined NoMaximumMessage DES_TCCNormal DES_TCCNormalToken

Below the minimum BelowMinimumMessage DES_TCCBelowMinimum DES_TCCBelowMinimumToken

Between the minimum
and Milestone1

NormalMessage DES_TCCNormal DES_TCCNormalToken

Between Milestone1
and Milestone2

Milestone1Message DES_TCCMilestone1 DES_TCCMilestone1Token

Between Milestone2
and the maximum

Milestone2Message DES_TCCMilestone2 DES_TCCMilestone2Token

Above the maximum AboveMaximumMessage DES_TCCAboveMaximum DES_TCCAboveMaximumToken

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 189 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Tokens in Messages

Each of these messages can display live data by using tokens. Here are the tokens:

{COUNT}

Number of characters or words in the textbox. It is updated as the user types.

Example

You have entered {COUNT}

{COUNT:singular:plural}

Helps build sentences where singular and plural forms are needed when you use the {COUNT} token. For example, “There is
1 item.” and “There are 2 items.”

You replace the term “singular” with the singular form of the word. You replace the term “plural” with the plural form of the
word.

It is updated as the user types.

Examples

You entered {COUNT} {COUNT:character:characters}.

You entered {COUNT} character{COUNT::s}

{NEARNESS}

How close the count is to the maximum or minimum. Once the count reaches the minimum, it evaluates the count to the
maximum. It is updated as the user types.

Example

You are over the maximum by {NEARNESS}

{NEARNESS: singular:plural}

Helps build sentences where singular and plural forms are needed when you use the {NEARNESS} token.

You replace the term “singular” with the singular form of the word. You replace the term “plural” with the plural form of the
word.

It is updated as the user types.

Examples

You are over the maximum by {NEARNESS:character:characters}

You are over the maximum by {NEARNESS} character{NEARNESS::s}

{MINIMUM}

The value of the Minimum property.

Example

You are below the minimum of {MINIMUM}

{MAXIMUM}

The value of the Maximum property.

Example

You are above the mximum of {MAXIMUM}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 190 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a TextCounter Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a TextBox control to the page. See the TextBoxes User’s Guide for details. Add the TextLengthValidator or
WordCountValidator to the textbox (only available when using the DES Validation Framework.)

3. Add a TextCounter control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the TextCounter control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:TextCounter id="[YourControlID]" runat="server" />

Programmatically creating the TextCounter control

 Identify the control which you will add the TextCounter control to its Controls collection. Like all ASP.NET
controls, the TextCounter can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the TextCounter control class. The constructor takes no parameters.

 Assign the ID property.

 Add the TextCounter control to the Controls collection.

In this example, the TextCounter is created with an ID of “TextCounter1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.TextCounter vTextCounter = new PeterBlum.DES.TextCounter();
vTextCounter.ID = "TextCounter1";
PlaceHolder1.Controls.Add(vTextCounter);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextCounter As PeterBlum.DES.TextCounter = New PeterBlum.DES.TextCounter()
vTextCounter.ID = "TextCounter1"
PlaceHolder1.Controls.Add(vTextCounter)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

4. Assign the TextBox control to the TextBoxControlID property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 191 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

5. If counting words, set CountType to Words.

6. Establish the limits, either in the textbox’s MaxLength property, the TextLengthValidator or WordCountValidator’s
Minimum and Maximum properties, or the TextCounter’s Minimum and Maximum properties.

7. If you want to use Milestone1 and Milestone2, assign them. Remember that they are the number of characters or words
before the maximum is reached. Note: Milestone2 defaults to 10. To turn it off, set it to 0.

8. Edit any of the messages and style sheets. See “Setting the Text and Style Sheets”.

9. For any other property, see “Properties of the TextCounter Control”.

10. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoTextCounter.aspx.

http://www.peterblum.com/DES/DemoTextCounter.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 192 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties of the TextCounter Control
For an overview, see “Using the TextCounter Control”.

Click on any of these topics to jump to them:

 TextBox Properties

 Message Properties

 Appearance Properties

 Behavior Properties

TextBox Properties
The Properties Editor shows these properties in the TextBox category.

 TextBoxControlID (string) – The ID to the TextBox control whose text will be evaluated. Supports the
System.Web.UI.WebControls.TextBox and its subclasses, including DES’s textboxes. It also supports controls
registered in the <ThirdPartyControls> section of the custom.des.config file whose sameas= attribute is
textbox.

When the TextBox control is not in the same naming container, assign the control reference programmatically to the
TextBoxControl property (below).

 TextBoxControl (Control) – A reference to the TextBox control attached to this TextCounter control. It is an alternative
to TextBoxControlID that allows the control to be anywhere on the page instead of the same naming container as the
TextCounter control. You must assign it programmatically.

When assigned, it overrides the value of TextBoxControlID.

 Minimum (int) – The minimum number of characters or words required. The page should not be saved when the text is
below this limit.

When below this number, the TextLengthValidator or WordCountValidator will report an error (based on its own
Minimum property).

When below, the control displays the text from the BelowMinimumMessage property and uses the style sheet class
defined in BelowMinimumCssClass.

When reached, the control changes the text to NormalMessage.

When 0, it first looks for a Minimum property on TextLengthValidator or WordCountValidator assigned to the textbox.
If not found, no minimum is used.

It defaults to 0.

 Maximum (int) – The maximum number of characters or words permitted. The page should not be saved when the text
is above this limit. This is a boundary but it doesn't stop the typing. It switches the text displayed.

When above this number, the TextLengthValidator or WordCountValidator reports an error. When reached, the control
changes the text it displays to the AboveMaximumMessage and uses the style sheet class defined in
AboveMaximumCssClass.

When 0, it first looks for a Maximum property on TextLengthValidator or WordCountValidator assigned to the textbox.
If not found, it looks at the MaxLength property on the TextBox (even if the textbox is MultiLine).

If both sources also are 0, then no maximum is used. The text displayed will come from NoMaximumMessage instead
of NormalMessage.

It defaults to 0.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 193 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 Milestone1 (int) – The number of characters or words before Maximum when Milestone1 is used. When Maximum
minus Milestone1 is reached, Milestone1Message is displayed and the style sheet class in Milestone1CssClass is
applied. For example, when Maximum is 100 and you want the Milestone1 to occur at the 80th character, use 20 (100 –
80) in Milestone1.

There are two milestones prior to Maximum. When each is hit, its own is displayed, replacing the current message and
style sheet class. This provides a way to escalate the message as the text count nears the limit.

When 0, milestone1 is not used.

It defaults to 0.

 Milestone2 (int) – The number of characters or words before Maximum when Milestone2 is used. When Maximum
minus Milestone2 is reached, Milestone2Message is displayed and the style sheet class in Milestone2CssClass is
applied. For example, when Maximum is 100 and you want the Milestone1 to occur at the 90th character, use 10 (100 –
90) in Milestone1.

There are two milestones prior to Maximum. When each is hit, its own is displayed, replacing the current message and
style sheet class. This provides a way to escalate the message as the text count nears the limit.

When 0, milestone2 is not used.

It defaults to 10.

 CountType (enum PeterBlum.DES.CountType) - Determines if it counts by characters or words.

The enumerated type PeterBlum.DES.CountType has these values:

o Characters

o Words

It defaults to CountType.Characters.

Note: Messages have terms like “character” and “word” embedded. As you switch this property from Characters to
Words, it automatically switches “character” to “word”. It does the reverse when you switch from Words to Characters.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 194 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Message Properties
The Properties Editor shows these properties in the Messages category.

 NoLimitMessage (string) - The message when there is no maximum. If a maximum is used, NormalMessage and several
others below are used.

Note: By having NoLimitMessage and NormalMessage properties defined, the TextCounter can have default text for
two cases without forcing you to edit a property.

The style sheet class used for this message is assigned to CssClass, which defaults to “DES_TCCNormal” in the
DES\Appearance\Interactive Pages\TextCounter.css file.

Use tokens to display dynamic information. See “Tokens in Messages”.

If "", it will still show the count.

It defaults to “{COUNT} {COUNT:character:characters)”.

 NoLimitMessageLookupID (string) – Gets the value for NoLimitMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of TextCounter. If no match is found OR this is blank, NoLimitMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 NormalMessage (string) - The message when the count is between the Minimum and Maximum. If any milestones are
used, it must be less than the milestone. If there is no maximum, NoLimitMessage is used instead.

Note: By having NoLimitMessage and NormalMessage properties defined, the TextCounter can have default text for
two cases without forcing you to edit a property.

The style sheet class used for this message is assigned to CssClass, which defaults to “DES_TCCNormal” in the
DES\Appearance\Interactive Pages\TextCounter.css file.

Use tokens to display dynamic information. See “Tokens in Messages”.

If "", it will still show the count.

It defaults to “{COUNT} of {MAXIMUM} characters”.

 NormalMessageLookupID (string) – Gets the value for NormalMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of TextCounter. If no match is found OR this is blank, NormalMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 Milestone1Message (string) - The message when the count reaches Milestone1.

The style sheet class used for this message is assigned to Milestone1CssClass, which defaults to
“DES_TCCMilestone1” in the DES\Appearance\Interactive Pages\TextCounter.css file.

Use tokens to display dynamic information. See “Tokens in Messages”.

If "", it uses the text from NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} - {NEARNESS} {NEARNESS:character
remains:characters remain}”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 195 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 Milestone1MessageLookupID (string) – Gets the value for Milestone1Message through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within
the String Group of TextCounter. If no match is found OR this is blank, Milestone1Message will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 Milestone2Message (string) - The message when the count reaches Milestone2.

The style sheet class used for this message is assigned to Milestone2CssClass, which defaults to
“DES_TCCMilestone2” in the DES\Appearance\Interactive Pages\TextCounter.css file.

Use tokens to display dynamic information. See “Tokens in Messages”.

If "", it uses the text from Milestone1Message or if that is blank, NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} - {NEARNESS} {NEARNESS:character
remains:characters remain}”.

 Milestone2MessageLookupID (string) – Gets the value for Milestone2Message through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within
the String Group of TextCounter. If no match is found OR this is blank, Milestone2Message will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 AboveMaximumMessage (string) - The message when the count exceeds Maximum.

The style sheet class used for this message is assigned to AboveMaximumCssClass, which defaults to
“DES_TCCAboveMax” in the DES\Appearance\Interactive Pages\TextCounter.css file.

Use tokens to display dynamic information. See “Tokens in Messages”.

If "", it uses the text from NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} – Exceeded by {NEARNESS}
{NEARNESS:character:characters}”.

 AboveMaximumMessageLookupID (string) – Gets the value for AboveMaximumMessage through the String Lookup
System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value should be
defined within the String Group of TextCounter. If no match is found OR this is blank, AboveMaximumMessage will
be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 196 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 BelowMinimumMessage (string) - The message when the count is below Minimum.

The style sheet class used for this message is assigned to BelowMinimumCssClass, which defaults to
“DES_TCCBelowMin” in the DES\Appearance\Interactive Pages\TextCounter.css file.

Use tokens to display dynamic information. See “Tokens in Messages”.

If "", it uses the text from NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} – Requires at least {MINIMUM}”.

 BelowMinimumMessageLookupID (string) – Gets the value for BelowMinimumMessage through the String Lookup
System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value should be
defined within the String Group of TextCounter. If no match is found OR this is blank, BelowMinimumMessage will be
used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 197 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Appearance Properties
The Properties Editor shows these properties in the Appearance category.

 DisplayMode (enum PeterBlum.DES.TextCounterDisplayMode) – Determines where the messages are shown. They can
appear within this control and in the textbox's Hint feature.

The enumerated type PeterBlum.DES.TextCounterDisplayMode has these values:

o Here - Use the location of the TextCounter.

o Hint - Use the textbox's Hint feature if it is set up. It will append its message to the Hint text. Because it
appends, you may want some separator between the Hint and the textcounter’s message.

o Both - Use both the TextCounter and Hint feature.

The default value is TextCounterDisplayMode.Here.

When Display mode is Hint or Both, use the HintManager.HintShowTextCounterSeparator to define the HTML that
separates the hint text from the TextCounter message. It defaults to “
”. If you want the TextCounter message to
appear first, use the token “{~}” as the first element of the HintManager.HintShowTextCounterSeparator property.
The HintManager is available on the PageManager control and on the PeterBlum.DES.Globals.Page object.

 CssClass (string) – The Cascading Style Sheet applied when text count is between the Minimum and Maximum, and
has not reached any milestones.

The style applies to the entire message. If you want the {COUNT} and {NEARNESS} tokens to be a different style, use
the NormalTokenCssClass property, which defaults to “DES_TCCNormalToken”.

It defaults to “DES_TCCNormal”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCNormal
{
}

 NormalTokenCssClass (string) – The Cascading Style Sheet applied to the {COUNT} and {NEARNESS} tokens when
text count is between the Minimum and Maximum, and has not reached any milestones.

To apply a style to the overall control, use the CssClass property.

It defaults to “DES_TCCNormalToken”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCNormalToken
{
}

 Milestone1CssClass (string) – The Cascading Style Sheet applied when text count has reached Milestone1.

The style applies to the entire message. If you want the {COUNT} and {NEARNESS} tokens to be a different style, use
the Milestone1TokenCssClass property, which defaults to “DES_TCCMilestone1Token”.

It defaults to “DES_TCCMilestone1”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCMilestone1
{
}

 Milestone1TokenCssClass (string) – The Cascading Style Sheet applied to the {COUNT} and {NEARNESS} tokens
when text count has reached Milestone1.

To apply a style to the overall control, use the Milestone1CssClass property.

It defaults to “DES_TCCMilestone1Token”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 198 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCMilestone1Token
{
}

 Milestone2CssClass (string) – The Cascading Style Sheet applied when text count has reached Milestone2.

The style applies to the entire message. If you want the {COUNT} and {NEARNESS} tokens to be a different style, use
the Milestone2TokenCssClass property, which defaults to “DES_TCCMilestone2Token”.

It defaults to “DES_TCCMilestone2”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCMilestone2
{
}

 Milestone2TokenCssClass (string) – The Cascading Style Sheet applied to the {COUNT} and {NEARNESS} tokens
when text count has reached Milestone2.

To apply a style to the overall control, use the Milestone2CssClass property.

It defaults to “DES_TCCMilestone2Token”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCMilestone2Token
{
 color: Red;
}

 AboveMaximumCssClass (string) – The Cascading Style Sheet applied when text count has exceeded the Maximum.

The style applies to the entire message. If you want the {COUNT} and {NEARNESS} tokens to be a different style, use
the AboveMaximumTokenCssClass property, which defaults to “DES_TCCAboveMaxToken”.

It defaults to “DES_TCCAboveMax”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCAboveMax
{
 color: Red;
}

 AboveMaximumTokenCssClass (string) – The Cascading Style Sheet applied to the {COUNT} and {NEARNESS}
tokens when text count has exceeded Maximum.

To apply a style to the overall control, use the AboveMaximumCssClass property.

It defaults to “DES_TCCAboveMaxToken”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCAboveMaxToken
{
 color: Red;
}

 BelowMinimumCssClass (string) – The Cascading Style Sheet applied when text count is below the Minimum.

The style applies to the entire message. If you want the {COUNT} and {NEARNESS} tokens to be a different style, use
the BelowMinimumTokenCssClass property, which defaults to “DES_TCCBelowMinToken”.

It defaults to “DES_TCCBelowMin”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 199 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

.DES_TCCBelowMin
{
 color: Red;
}

 BelowMinimumTokenCssClass (string) – The Cascading Style Sheet applied to the {COUNT} and {NEARNESS}
tokens when text count is below the Minimum.

To apply a style to the overall control, use the BelowMinimumCssClass property.

It defaults to “DES_TCCBelowMinToken”.

This style is declared in DES\Appearance\Interactive Pages\TextCounter.css.

.DES_TCCBelowMinToken
{
 color: Red;
}

 BackColor, BorderColor, BorderStyle, BorderWidth, Columns, Font, ForeColor, Height, and Style – These
properties are described in System.Web.UI.WebControls.WebControl Members.

Recommendation: Use style sheets class with the CssClass property. If any of these properties are applied, they will
override the corresponding attribute in any style sheet class used on this control.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 200 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Behavior Properties
The Properties Editor shows these properties in the Behavior category.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 Visible (Boolean) – When false, this control is not used. It defaults to true.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to save the property. Individual segments have a
similar method: TrackPropertyInViewState("propertyname").

For more details on the PeterBlum.DES.ViewStateMgr class, see “The ViewState and Preserving Properties for
PostBack” in the Validation User’s Guide.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 201 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Context Menu Control
The Context Menu control provides a client-side popup menu that looks like the browser’s right-click context menus. It is
designed to show a list of commands and optionally their keystroke equivalents. When the mouse passes over a command,
the row is highlighted, the way context menus do. When the mouse is clicked on a row, the popup closes and associated
JavaScript code is executed. You supply the JavaScript code for each command.

Click on any of these topics to jump to them:

 Features

 Using the Context Menu

 Overall Appearance

 Menu Command Rows

 Menu Separator Rows

 Menu Hint Rows

 Click Items: Adding Controls Which Popup The ContextMenu

 Adding a Context Menu

 Complete Example

 Properties of the Context Menu

The Context Menu control offers an interesting extension, where you can put non-command information in for hints. The
entire menu can consist of hints and work as popup help, or it can be mixed with commands. The hint area can have a
different background and font.

This control can popup in several ways:

 You select a list of one or more elements on the page that respond to the mouse click to popup. This allows you to have
numerous surfaces, perhaps a group of related fields, all which offer the same commands.

 The browser page can be a popup. This would provide a menu for the entire page.

 You select whether the left, right or either button pops up. The left button causes the context menu to drop down from
the associated element clicked. The right button causes the context menu to drop down from the current mouse point.
The document.body always pops up from the current mouse point.

It pops down by clicking on any row except those with a separator bar and clicking outside the menu frame.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 202 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
WARNING: Not all browsers support the ContextMenu. It requires the browser implements the oncontextmenu event.
Internet Explorer for Windows, FireFox, Netscape 7+, and Safari do. Opera does not.

 By default, it takes on the appearance of a standard context menu. (The default style sheets are designed to look much
like the Context menu of Windows XP under IE 6.)

 Each “command” row can show a label and keyboard equivalent.

 The keyboard equivalent will actually operate the menu without requiring a popup.

 The command is any JavaScript you want to write. It also provides some built in scripts to show a confirmation message
and post back, much like a DES button can.

 It can popup either with a left or right click. Right click is the tradition for a context menu. Left click is excellent for
putting a Help button on the page which opens the menu. The left button causes the context menu to drop down from the
associated element clicked. The right button causes the context menu to drop down from the current mouse point.

 It can be attached to a single control, a list of controls, or the window. When attached to the window, it overrides the
standard browser’s context menu.

 In addition to commands, you can add hints, which are rows of text (or HTML). They don’t fire commands.

 You can also insert menu separators.

 If you establish a maximum height and the menu items exceed that height, it installs a scrollbar to access all commands.

 When you have a license for this module, many controls in the Peter’s Date and Time module will offer a context menu
with their own commands.

Use demos here: http://www.peterblum.com/DES/DemoContextMenu.aspx.

http://www.quirksmode.org/js/events_compinfo.html�
http://www.peterblum.com/DES/DemoContextMenu.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 203 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the Context Menu
The Context Menu is subclassed from the System.Web.UI.WebControls.Panel control. It contains rows that show
menu commands (PeterBlum.DES.MenuCommandItem objects), menu separators
(PeterBlum.DES.MenuCommandSeparator objects), and hints (PeterBlum.DES.MenuHint objects). It is
attached to controls or the window itself using PeterBlum.DES.ClickItem objects.

Use demos here: http://www.peterblum.com/DES/DemoContextMenu.aspx.

Click on any of these topics to jump to them:

 Overall Appearance

 Menu Command Rows

 Providing a Script for your Command

 Appearance of Menu Command Rows

 Adding a PeterBlum.DES.MenuCommandItem to the ContextMenu

 Properties for PeterBlum.DES.MenuCommandItem

 Menu Separator Rows

 Appearance of Menu Separator Rows

 Adding a PeterBlum.DES.MenuSeparator to the ContextMenu

 Properties for PeterBlum.DES.MenuCommandSeparator

 Menu Hint Rows

 Appearance of Menu Hint Rows

 Adding a PeterBlum.DES.MenuHint to the ContextMenu

 Properties for PeterBlum.DES.MenuHint

 Click Items: Adding Controls Which Popup The ContextMenu

 The PeterBlum.DES.ClickItem Class

 Inserting Variables Into Your Scripts

 Adding a PeterBlum.DES.ClickItem to the ContextMenu

 Properties for PeterBlum.DES.ClickItem

Here is a sample Context Menu.

You add the menu commands, menu separators, and hints to the Items property of the ContextMenu. See the following
sections: “Menu Command Rows”, “Menu Separator Rows”, and “Menu Hint Rows”

You add ClickItem objects to the ClickList property on of the ContextMenu. See “Click Items: Adding Controls Which
Popup The ContextMenu”.

Command Label

Menu Separator Row

Command Keystroke

Hint Row

Menu Command Row
Image where the user

clicks to popup
(For example)

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.panel.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.panel.aspx�
http://www.peterblum.com/DES/DemoContextMenu.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 204 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Overall Appearance
The appearance is style sheet driven, using style sheet classes defined in \DES\Appearance\Interactive
Pages\Menu.css. This topics discusses the classes for the overall appearance. See other topics for their respective style
sheet classes.

Here is the default overall appearance style sheet class. It uses padding attributes to establish the gaps around the menu as
traditionally seen in context menus.

.DESMenu
{
 background-color: white;
 color: black;
 font-size: 8pt;
 font-family: Arial;
 border-right: #a9a9a9 1px solid; /* dark grey */
 border-top: #a9a9a9 1px solid;
 border-left: #a9a9a9 1px solid;
 border-bottom: #a9a9a9 1px solid;
 padding-top: 2px;
 padding-left: 2px;
 padding-right: 2px;
 padding-bottom: 2px;
}

While you can add the width here, you may have several menus throughout your web application requiring differing widths.
So set the width in the control’s Width property. It defaults to 200px.

The menu height is normally a function of the number of menu items you add. If you have a large number of items, set a
maximum height in the control’s Height property. It will establish a scrollbar to allow viewing the commands that exceed the
height.

On Internet Explorer, you can take advantage of two visual effects. For a shadow, set the UseShadowEffect property to
true. To fade in and out as it pops up and down, set the UsePopupEffect property to true.

The menu appears relative to either the control that was clicked or to the mouse, depending on whether the using a left button
click or right button click. The menu positions itself using the HorizPosition and VertPosition properties, which default to
RightSidesAlign and PopupBelow, respectively.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 205 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Menu Command Rows
The primary type of “MenuItem” is a menu command, which provides a label, optional keystroke, and JavaScript to run
when the command is selected. The PeterBlum.DES.MenuCommandItem class describes a single menu command.

Set the label in the CommandLabel property of the MenuCommandItem.

If you want to use a keystroke, set it in the CommandKey property. The keystroke will only work on HTML elements that
have focus. They can also override the browser’s menu command keystrokes so make judicious choices.

Each MenuCommandItem must have its CommandID property assigned to a unique number. This number is used to let you
find it programmatically for modification or deletion. It is also used by the script you write to determine the command that
invoked the script.

Click on any of these topics to jump to them:

 Providing a Script for your Command

 OnClickScript Property

 ProcessCommandFunctionName property

 Validating, Showing A Confirmation Message, and Posting Back

 Order of the Actions

 Appearance of Menu Command Rows

 Command Row

 Hiliting on MouseOver

 Label

 Command Key

 Adding a PeterBlum.DES.MenuCommandItem to the ContextMenu

 Properties for PeterBlum.DES.MenuCommandItem

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 206 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Providing a Script for your Command

Menu commands run JavaScript. You determine the actions of the script. Often your script takes a client-side action like
changing the value of a textbox (for example, a Clear command could remove the text of the textbox using the context
menu). Sometimes you want it to post back to the server. You may want to validate or show a confirmation message too. The
MenuCommandItem supports all of this with several properties.

There are two places to write script that takes a client-side action: OnClickScript property and
ProcessCommandFunctionName property.

OnClickScript Property

The OnClickScript property of the MenuCommandItem. Just add the desired script and it will be run.

For example, this MenuCommandItem shows an alert:

<des:MenuCommandItem CommandID="10" CommandLabel="Say hello, Ollie"
 OnClickScript="alert('Hello Ollie!');" />

It is effective when you encapsolate all data needed by your script into the code. You can embed the CommandID and data
specific to the control in the script, like this:

OnClickScript="MyCmdFunction(10, new Date(2008, 8, 1));"

However, there is a better way to call a function and supply it with data, by using the ProcessCommandFunctionName
property.

ProcessCommandFunctionName property

The ProcessCommandFunctionName property on the ContextMenu control. Use this to specific a function that is called by
all MenuCommandItems. The function is passed the CommandID so your function can determine the command that invoked
it. In its Args parameter, it is also passed two values that come from the ClickItem to let you know about the element that
opened the context menu. These values are very powerful as they let you have a single context menu shared by many
controls, while letting your scripts to know enough about each control to take specialized actions.

This example is a snippet from the DES DateTextBox’s context menu function. It assumes the first token is the id of the
DateTextBox so it knows how to update that control’s value. The ProcessCommandFunctionName property is assigned
“DES_DTBMenuCmd”. The script functions are documented in the Date and Time User’s Guide.

function DES_DTBMenuCmd(pCmdID, pArgs)
{
 var vDTB = DES_GetById(pArgs.Token1);
 switch (pCmdID)
 {
 case 10: // next day
 DES_DTBAddDays(vDTB, -1);
 break;
 case 11: // previous day
 DES_DTBAddDays(vDTB, 1);
 break;
 case 2: // today
 DES_DTBTodayCmd(vDTB);
 break;
 }
 return true;
}

See also “Adding Your JavaScript to the Page”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 207 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Validating, Showing A Confirmation Message, and Posting Back

To validate, set CausesValidation to true and ValidationGroup to the appropriate validation group name. These
properties are on the MenuCommandItem class. This feature supports both the DES and Native Validation Frameworks.

To show a confirmation message, set the ConfirmMessage property to the text of your message on the MenuCommandItem
class.

To post back, set the PostBack property to true on the MenuCommandItem class. Use the Context Menu’s MenuSelected
event to process the post back. That event is passed the CommandID value so you can determine which command was
invoked.

Alternatively, you can have the command point the browser to another URL by setting the NavigateUrl property on the
MenuCommandItem class.

Order of the Actions

With so many ways to set up your scripts, it is important to know the order of the actions.

1. Validate when CausesValidation=true. If there is a validation error, stop.

2. Show the Confirm Message when ConfirmMessage is assigned. If the user clicks Cancel, stop.

3. Run the script in the OnClickScript property.

4. Run the script through the function assigned to the ProcessCommandFunctionName property. It your function returns
false, stop.

5. Either post back when PostBack is true or navigate to another page when NavigateUrl is assigned.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 208 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Appearance of Menu Command Rows

Style sheet classes determine the appearance and position of the label and command key. They also provide the hilite effect
when the mouse is over a menu command. The default classes are defined in \DES\Appearance\Interactive
Pages\Menu.css.

Command Row

The overall row has a style sheet. It is generally used to establish row height and padding. By default, it uses the class
“DESMenuCommand” but you can change it in the CommandRowCssClass property on the ContextMenu control.

Here is the default style sheet:

.DESMenuCommand
{
 height:20px;
 padding-top:4px;
}

Hiliting on MouseOver

To provide a mouse over effect, the ContextMenu merges the DESMenuCommand class with the DESMenuMouseOver
class (or whatever is assigned to the MouseOverCssClass property on the ContextMenu control).

As a result, the DESMenuMouseOver class should only contain the changes that occur when the mouse is over, such as the
background color.

Here is the default style sheet:

.DESMenuMouseOver
{
 background-color: #3366cc;
}

Label

The label has it’s own style sheet. It should always use the float and position styles to retain the correct positioning. By
default, it uses the class “DESMenuLabel” but you can change it in the CommandLabelCssClass property on the
ContextMenu control.

Here is the default style sheet:

.DESMenuLabel
{
 text-align: left;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. If these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
 float:left;
 position:relative;
 left:16px;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 209 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Command Key

The command key has it’s own style sheet. It should always use the float and position styles to retain the correct positioning.
By default, it uses the class “DESMenuKey” but you can change it in the CommandKeyCssClass property on the
ContextMenu control.

Here is the default style sheet:

.DESMenuKey
{
 text-align: right;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. If these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
 float:right;
 position:relative;
 left:-16px;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 210 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a PeterBlum.DES.MenuCommandItem to the ContextMenu

Add MenuCommandItem objects to the ContextMenu’s Items property. It is a collection type. Items are shown in the order
they are added.

Visual Studio and Visual Web Developer Design Mode

In the Properties Editor, click on the button to the
right of the Items property or in the SmartTag

, select Define Menu Items.

Click the Add button and select
MenuCommandItem. Fill in the properties.

Always assign CommandID and
CommandLabel.

ASP.NET Declarative Syntax

Define each MenuCommandItem object as a child object of the Context Menu control. Always supply the CommandID and
CommandLabel properties.

Here is a sample:

<des:ContextMenu id="ContextMenu1" runat="server" [various properties]>
 <des:MenuCommandItem CommandID="100" CommandLabel="Show Cards"
 OnClickScript="ShowCards();"/>
 <des:MenuCommandItem CommandID="101" CommandLabel="Bid $10"
 CommandKey="B" OnClickScript="Bid(10.00);" />
</des:ContextMenu>

Programmatically Add a MenuCommandItem Object

To add a Command Row programmatically, calls the method AddCommand() on the ContextMenu control. There are 4
overloaded versions. Use the last two if you want to postback or navigate to a URL. Each returns a
PeterBlum.DES.MenuCommandItem object that has already been added as the last element of the Items property. You
can further edit its properties as needed.

[C#]

public PeterBlum.DES.MenuCommandItem AddCommand(short pCommandID,
 string pCommandLabel);

public PeterBlum.DES.MenuCommandItem AddCommand(short pCommandID,
 string pCommandLabel,
 string pCommandKey, string pOnClickScript,
 bool pCausesValidation, string pValidationGroup,
 string pConfirmMessage);

public PeterBlum.DES.MenuCommandItem AddCommand(short pCommandID,
 string pCommandLabel,
 string pCommandKey, string pOnClickScript,
 bool pCausesValidation, string pValidationGroup,
 string pConfirmMessage, bool pPostBack);

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 211 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

public PeterBlum.DES.MenuCommandItem AddCommand(short pCommandID,
 string pCommandLabel,
 string pCommandKey, string pOnClickScript,
 bool pCausesValidation, string pValidationGroup,
 string pConfirmMessage, string pNavigateUrl);

[VB]

Public Function AddCommand(ByVal pCommandID As System.Int16, _
 ByVal pCommandLabel As String) As PeterBlum.DES.MenuCommandItem

Public Function AddCommand(ByVal pCommandID As System.Int16, _
 ByVal pCommandLabel As String, ByVal pCommandKey As String, _
 ByVal pOnClickScript As String, _
 ByVal pCausesValidation As Boolean, ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String) As PeterBlum.DES.MenuCommandItem

Public Function AddCommand(ByVal CommandID As System.Int16, _
 ByVal pCommandLabel As String, ByVal pCommandKey As String, _
 ByVal pOnClickScript As String, _
 ByVal pCausesValidation As Boolean, ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String, _
 ByVal pPostBack As Boolean) As PeterBlum.DES.MenuCommandItem

Public Function AddCommand(ByVal CommandID As System.Int16, _
 ByVal pCommandLabel As String, ByVal pCommandKey As String, _
 ByVal pOnClickScript As String, _
 ByVal pCausesValidation As Boolean, ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String, _
 ByVal pNavigateUrl As String) As PeterBlum.DES.MenuCommandItem

Parameters

pCommandID

Assigned to CommandID. Always assign it a unique value.

pCommandLabel

Assigned to the CommandLabel property.

pCommandKey

Assigned to the CommandKey property. If not used, pass "".

pOnClickScript

Assigned to the OnClickScript property. If not used, pass "".

pCausesValidation

Assigned to the CausesValidation property. If not used, pass false.

pValidationGroup

Assigned to the ValidationGroup property. If not used, pass "". To validate all groups, pass "*".

pConfirmMessage

Assigned to the ConfirmMessage property. If not used, pass "".

pPostBack

Assigned to the PostBack property. If not used, pass false.

pNavigateUrl

Assigned to the NavigateUrl property. If not used, pass "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 212 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Return Value

Returns a PeterBlum.DES.MenuCommandItem object with its properties assigned to the values passed in. It has
already been added to the Items property at as the last element. You can further edit the properties of the
PeterBlum.DES.MenuCommandItem object as needed.

Example

In this example, the Page_Load() method will add the same two commands shown above in the ASP.NET example to the
Context Menu whose ID is CM1.

[C#]

protected void Page_Load(object sender, System.EventArgs e)
{
 ContextMenu1.AddCommand(100, "Show Cards");
 ContextMenu1.AddCommand(101, "Bid $10",
 "B", "Bid(10.00);", // command key and OnClickScript
 false, "", // validation
 "Do you want to place a $10 bid?"); // confirm message
}

[VB]

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ContextMenu1.AddCommand(100, "Show Cards")
 ContextMenu1.AddCommand(101, "Bid $10", _
 "B", "Bid(10.00);", _ ' command key and OnClickScript
 false, "", _ ' validation
 "Do you want to place a $10 bid?") ' confirm message
End Sub

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 213 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for PeterBlum.DES.MenuCommandItem

 CommandID (string) – This is an integer which allows you to uniquely identify a row. You must define a unique value
for it. It has several usages:

o To find and modify it programmatically.

o When using the context menu’s ProcessCommandFunctionName property, it tells your script which
command was invoked.

o When using the context menu’s EnableItemFunctionName property, it tells your script which menu item
needs to be enabled or disabled.

 CommandLabel (string) – The text to appear in the column for the command label. It is required – it cannot be blank.
Lengthy commands may overlap the keystroke forcing you to adjust the value of the context menu’s Width property.

 CommandLabelLookupID (string) – Gets the value for CommandLabel through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of ContextMenus. If no match is found OR this is blank, CommandLabel will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 CommandKey (string) – The text to appear in the column for the keystroke. When this is a command, it will only show
one keystroke and make only the first character uppercase. So it will truncate at the first space. (If it gets “ENTER T D
PAGEUP”, it will strip off everything after “Enter”.) When this is a command, uses the exact text that you supply. The
string can include the Control key modifier by using the text “CTRL+” before the key. For example, “CTRL+T”.

 Note: This field displays text representing a key. It does not actually care what the text is and certainly doesn’t cause the
keys that it contains to do anything when those keys are typed. The Context Menu doesn’t actually have any keyboard
features of its own.

 OnClickScript (string) – JavaScript code to execute when the command is selected. Only applies when this is a
command, not on a hint. It must be a complete JavaScript statement, ending in a semicolon. It should not start with
“JavaScript:” as the control adds this text for you.

Your script can signal DES to stop processing the remaining actions of the command with this line of code:

vStop = true;

 CausesValidation (Boolean) – When true, the command first attempts to validate all controls whose validation group
matches the ValidationGroup property. If it succeeds, the remaining actions will proceed.

Use the ValidationGroup property to specify the validation group name. It supports "*" to identify all groups. DES and
native Validators are supported.

It defaults to false.

 ValidationGroup (string) – When CausesValidation is true, this is the validation group name that identifies the
validators to fire. It can be "*" to validate all on the page.

It defaults to "".

 PostBack (Boolean) – When true, the last action taken will be to postback.

The postback will occur after attempting validation (when CausesValidation=true), running OnClickScript, and
running the Menu's ProcessCommandFunction.

Use the Menu.MenuSelected event to intercept the postback. Its CommandID is passed to MenuSelected. It helps you
know what action occurred.

Overrides NavigateUrl if that is also assigned.

It defaults to false.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 214 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 PostBackTracksFocus (Boolean) – ASP.NET 2 only. When PostBack=true and this is true, it attempts to keep the
focus on the last control with focus prior to posting back.

It defaults to false.

 NavigateUrl (string) – When assigned, direct the browser to this URL.

If PostBack=true, this property is not used. The redirect will occur after attempting validation (when
CausesValidation=true), running OnClickScript, and running the Menu's ProcessCommandFunction.

It defaults to "".

 ConfirmMessage (string) – When assigned, prompt the user to confirm with this message.

If the user clicks Cancel, the process is stopped. If CausesValidation = true, validation runs first. The confirm
message runs before running any scripts.

It defaults to "".

 ConfirmMessageLookupID (string) – Gets the value for ConfirmMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of ConfirmMessages. If no match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 215 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Menu Separator Rows
A menu separator is a horizontal line between menu commands. To create a menu separator, add a
PeterBlum.DES.MenuCommandSeparator object to the Items property on the ContextMenu.

Click on any of these topics to jump to them:

 Appearance of Menu Separator Rows

 Adding a PeterBlum.DES.MenuSeparator to the ContextMenu

 Properties for PeterBlum.DES.MenuCommandSeparator

Appearance of Menu Separator Rows

Style sheet classes determine the appearance of the menu separator. The default classes are defined in
\DES\Appearance\Interactive Pages\Menu.css.

By default, the MenuSeparator uses the class “DESMenuSeparator” to define the overall height of the separator line, but
you can change it in the SeparatorCssClass property on the ContextMenu control.

Here is the default style sheet:

.DESMenuSeparator
{
 height:6px;
 font-size:2pt;
}

The horizontal line itself is a second style sheet class that uses the border attribute to create the line. It always must declare a
second class name of “Line” after the same name used in the SeparatorCssClass property.

.DESMenuSeparator .Line
{
 border-top: #a9a9a9 1px solid;
 width: 100%;
 height: 1px;
 margin-top: 2px;
 margin-bottom: 2px;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 216 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a PeterBlum.DES.MenuSeparator to the ContextMenu

Visual Studio and Visual Web Developer Design Mode

In the Properties Editor, click on the button to the
right of the Items property or in the SmartTag ,
select Define Menu Items.

Click the Add button and select
MenuCommandSeparator.

Only fill in the CommandID property if you need
to programmatically access this element.

ASP.NET Declarative Syntax

Define the MenuCommandSeparator as a child of the ContextMenu with no properties.

<des:ContextMenu id="ContextMenu1" runat="server" [various properties]>
 <des:MenuCommandSeparator />
</des:ContextMenu>

Programmatically Add a MenuCommandSeparator Object

To add a Menu Separator programmatically, calls the method AddSeparator() on the ContextMenu control. It will be
added to the end of the Items property.

 [C#]

public PeterBlum.DES.MenuCommandSeparator AddSeparator();

[VB]

Public Function AddSeparator() As PeterBlum.DES.MenuCommandSeparator

Example

[C#]

protected void Page_Load(object sender, System.EventArgs e)
{
 ContextMenu1.AddSeparator();
}

[VB]

Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ContextMenu1.AddSeparator()
End Sub

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 217 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for PeterBlum.DES.MenuCommandSeparator

 CommandID (string) – This is an integer which allows you to uniquely identify a row. It has several usages:

o To find and modify it programmatically.

o When using the context menu’s EnableItemFunctionName property, it tells your script which menu item
needs to be enabled or disabled.

You can leave it unassigned (default of 0) if you do not need it for either of these cases.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 218 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Menu Hint Rows
A hint is a row whose text fills the row and is not selectable. It’s used for descriptive information.

To create a hint, add a PeterBlum.DES.MenuHint object to the Items property on the ContextMenu.

Click on any of these topics to jump to them:

 Appearance of Menu Hint Rows

 Adding a PeterBlum.DES.MenuHint to the ContextMenu

 Properties for PeterBlum.DES.MenuHint

Appearance of Menu Hint Rows

Style sheet classes determine the appearance of the menu separator. The default classes are defined in
\DES\Appearance\Interactive Pages\Menu.css.

By default, the hint uses the class “DESMenuHint”, but you can change it in the CommandHintCssClass property on the
ContextMenu control.

Here is the default style sheet:

.DESMenuHint
{
 color: #a52a2a; /* brown */
 background-color: #ffff99;
 border-right: #d3d3d3 thin inset;
 border-top: #d3d3d3 thin inset;
 border-left: #d3d3d3 thin inset;
 border-bottom: #d3d3d3 thin inset;
 padding-top: 2px;
 padding-left: 2px;
 padding-right: 2px;
 padding-bottom: 2px;
 margin-left: 2px;
 margin-right: 2px;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 219 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a PeterBlum.DES.MenuHint to the ContextMenu

Visual Studio and Visual Web Developer Design Mode

In the Properties Editor, click on the button to the
right of the Items property or in the SmartTag ,
select Define Menu Items.

Click the Add button and select MenuHint.
Assign its properties including Hint for the text of
the hint.

ASP.NET Declarative Syntax

Define the MenuCommandSeparator as a child of the ContextMenu. Assign the Hint property to the hint text. Only assign the
CommandID property if you need to retrieve the MenuCommandSeparator object programmatically.

<des:ContextMenu id="ContextMenu1" runat="server" [various properties]>
 <des:MenuHint Hint="Maximum bet is $50" />
</des:ContextMenu>

Programmatically Add a MenuHint Object

To add a hint programmatically, calls the method AddHint() on the ContextMenu control. It will be added to the end of
the Items property.

 [C#]

public PeterBlum.DES.MenuHint AddHint(string pHint);

[VB]

Public Function AddHint(ByVal pHint As String) As PeterBlum.DES.MenuHint

Parameters

pHint

The text of the hint.

Return value

The PeterBlum.DES.MenuHint object, already assigned to the Items property and with the Hint property assigned.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 220 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example

[C#]

protected void Page_Load(object sender, System.EventArgs e)
{
 ContextMenu1.AddHint("Maximum bet is $50");
}

[VB]

Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ContextMenu1.AddHint("Maximum bet is $50")
End Sub

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 221 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for PeterBlum.DES.MenuHint

 CommandID (string) – This is an integer which allows you to uniquely identify a row. It has several usages:

o To find and modify it programmatically.

o When using the context menu’s EnableItemFunctionName property, it tells your script which menu item
needs to be enabled or disabled.

You can leave it unassigned (default of 0) if you do not need it for either of these cases.

 Hint (string) – The text of the hint. It is required – it cannot be blank.

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “String Lookup System” in
the General Features Guide.) The LookupID and its value should be defined within the String Group of
ContextMenus. If no match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 222 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Click Items: Adding Controls Which Popup The ContextMenu
You must tell the Context Menu which controls popup a context menu. You can have as many as you’d like. You also define
if it pops up on a left or right mouse button. Left buttons always drop down from the element pressed. Right buttons popup at
the current mouse position.

There are two types of elements which Context Menu supports:

 Any document object model (DOM) element with an ID. When you create a page, all WebControls are assigned an ID
automatically and these IDs are what the Context Menu needs. If you use an HtmlControl, make sure it has an “ID=”
parameter.

 The document.body DOM element. When the user clicks on this, it always pops up to the current mouse point, even
if the left mouse button is clicked.

Click on any of these topics to jump to them:

 The PeterBlum.DES.ClickItem Class

 Inserting Variables Into Your Scripts

 Adding a PeterBlum.DES.ClickItem to the ContextMenu

 Properties for PeterBlum.DES.ClickItem

The PeterBlum.DES.ClickItem Class

To add an element that pops up the context menu, you must add a PeterBlum.DES.ClickItem object to the ClickList
property. The ContextMenu requires at least one ClickItem defined.

Assign the ID of the control to the ControlID property on the ClickItem class. If you want to use the document.body DOM
element, leave ControlID unassigned.

Select which mouse button(s) invoke the context menu with the MouseButtonType property on the ClickItem class. You can
select Left, Right, and Both. Left mouse clicks always popup relative to the control specified in ControlID. Right mouse
clicks popup from the mouse position.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 223 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Inserting Variables Into Your Scripts

When you write scripts using the ProcessCommandFunctionName property on the ContextMenu, you can let each ClickItem
supply up to two variables that your scripts can use. The most common usage is to provide the DHTML element id of the
control itself so your scripts can modify that element on the page. For example, DES’s DateTextBox provides a context menu
with commands to modify the current date shown in the textbox. It supplies the ID of the TextBox element so the context
menu can pass it or its DHTML element to functions that support the DateTextBox.

These variables can take several types of information: reference to a control which is converted to the ClientID of that
control, string, integer, double, and boolean. If you have other types, consider passing data through a string and writing
client-side code that interprets your data.

Variables are set with the Variable1InScript and Variable2InScript properties. Inside your ProcessCommand function, the
Args parameter is an object that contains two properties: Token1 and Token2. They will be in the native type of string
(including for Control’s ClientID), integer, floating point, or boolean.

You assign these VariableInScript properties programmatically because their data is usually dynamic. With this in mind, you
probably will create PeterBlum.DES.ClickItem objects programmatically when using variables. For example:

ContextMenu1.AddClickItem(ImageOnTextBox, PeterBlum.DES.MouseButtonType.Right,
 TextBox1, "Start Date")

See “Adding a PeterBlum.DES.ClickItem to the ContextMenu”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 224 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a PeterBlum.DES.ClickItem to the ContextMenu

Add the PeterBlum.DES.ClickItem objects to the ClickList property on the ContextMenu. If you intend to support
the Variable1InScript and Variable2InScript properties, add ClickItem objects programmatically.

Visual Studio and Visual Web Developer Design Mode

In the Properties Editor, click on the button to the
right of the ClickList property or in the SmartTag ,
select Controls that Popup the Menu.

Click the Add button and assign its properties.

If you need to assign Variable1InScript and
Variable2InScript properties, you must do so
programmatically. It’s probably easiest to create the
ClickItem programmatically in that case.

ASP.NET Declarative Syntax

Add a child tag called “<ClickList>” and define the ClickItem as a child of that tag:

<des:ContextMenu id="ContextMenu1" runat="server" [various properties]>
 <ClickList>
 <des:ClickItem ControlId="TextBox1" MouseButtonType="Left" />
 <des:ClickItem ControlId="" MouseButtonType="Right" />
 </ClickList>
</des:ContextMenu>

If you need to assign Variable1InScript and Variable2InScript properties, you must do so programmatically. It’s probably
easiest to create the ClickItem programmatically in that case.

Programmatically Add a MenuHint Object

To add a PeterBlum.DES.ClickItem programmatically, call the AddClickItem() method on the ContextMenu
control.

[C#]

public PeterBlum.DES.ClickItem AddClickItem(string pControlID,
 PeterBlum.DES.MouseButtonType pButtonType);

public PeterBlum.DES.ClickItem AddClickItem(Control pControl,
 PeterBlum.DES.MouseButtonType pButtonType);

public PeterBlum.DES.ClickItem AddClickItem(string pControlID,
 PeterBlum.DES.MouseButtonType pButtonType,
 object pVariable1InScript, object pVariable2InScript);

public PeterBlum.DES.ClickItem AddClickItem(Control pControl,
 PeterBlum.DES.MouseButtonType ButtonType,
 object pVariable1InScript, object pVariable2InScript);

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 225 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 [VB]

Public Function AddClickItem(ByVal pControlID As String, _
 ByVal pButtonType As PeterBlum.DES.MouseButtonType) As PeterBlum.DES.ClickItem

Public Function AddClickItem(ByVal pControl As Control, _
 ByVal pButtonType As PeterBlum.DES.MouseButtonType) As PeterBlum.DES.ClickItem

Public Function AddClickItem(ByVal pControlID As String, _
 ByVal pButtonType As PeterBlum.DES.MouseButtonType, _
 ByVal pVariable1InScript As Object, ByVal pVariable2InScript As Object _
) As PeterBlum.DES.ClickItem

Public Function AddClickItem(ByVal pControl As Control, _
 ByVal pButtonType As PeterBlum.DES.MouseButtonType, _
 ByVal pVariable1InScript As Object, ByVal pVariable2InScript As Object _
) As PeterBlum.DES.ClickItem

Parameters

pControlID

Assigned to the ControlID property. When using document.body, pass "".

pControl

Assigned to the ControlInstance property. When using document.body, pass null.

pButtonType

Assigned to MouseButtonType property.

pVariable1InScript

Assigned to the Variable1InScript property. Pass null if not used.

pVariable2InScript

Assigned to the Variable2InScript property. Pass null if not used.

Return Value

Returns the PeterBlum.DES.ClickItem object that was created. It has already been added to the ClickList property of
the ContextMenu and its properties are assigned to the values passed in.

Example

In this example, the Page_Load() method will add the same elements shown above in the ASP.NET Declarative Syntax
example.

[C#]

protected void Page_Load(object sender, System.EventArgs e)
{
 ContextMenu1.AddClickItem("TextBox1", MouseButtonType.Left);
 ContextMenu1.AddClickItem(null, MouseButtonType.Right);
}

[VB]

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ContextMenu1.AddClickItem("TextBox1", MouseButtonType.Left)
 ContextMenu1.AddClickItem(null, MouseButtonType.Right)
End Sub

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 226 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties for PeterBlum.DES.ClickItem

 ControlID (string) – When a control pops it up, set the ID of the control. The control must be in the same or a parent
Naming Container of the Context Menu. When the control is not in the same naming container, assign the control
reference programmatically to the ControlInstance property (below).

If you want to select document.body, leave this unassigned.

 ControlInstance (Control) – A reference to the control that pops up the ContextMenu. It is an alternative to ControlID
that allows the control to be anywhere on the page instead of the same naming container as the ContextMenu control.
You must assign it programmatically.

When assigned, it overrides the value of ControlID.

 MouseButtonType (enum PeterBlum.DES.MouseButtonType) – Which mouse button pops it up: Left, Right, or
Both.

 Variable1InScript (object) – Provides a value for use by the ProcessCommand function that is unique for this
ClickItem. It is available to your function in the Args.Token1 property. See “Inserting Variables Into Your Scripts”.

This is an object type to allow any type passed. However, it’s limited to these types:

Control (will use the clientID), string, integer, double, and boolean.

When null, nothing is set up.

It defaults to null.

 Variable2InScript (object) – Provides a value for use by the ProcessCommand function that is unique for this
ClickItem. It is available to your function in the Args.Token2 property. See “Inserting Variables Into Your Scripts”.

This is an object type to allow any type passed. However, it’s limited to these types:

Control (will use the clientID), string, integer, double, and boolean.

When null, nothing is set up.

It defaults to null.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 227 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding a Context Menu
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a ContextMenu control to the page.

Visual Studio and Visual Web Developer Users

Drag the ContextMenu control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:ContextMenu id="[YourControlID]" runat="server" />

Programmatically creating the ContextMenu control

 Identify the control which you will add the ContextMenu control to its Controls collection. Like all ASP.NET
controls, the ContextMenu can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the ContextMenu control class. The constructor takes no parameters.

 Assign the ID property.

 Add the ContextMenu control to the Controls collection.

In this example, the ContextMenu is created with an ID of “ContextMenu1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.ContextMenu vContextMenu =
 new PeterBlum.DES.ContextMenu();
vContextMenu.ID = "ContextMenu1";
PlaceHolder1.Controls.Add(vContextMenu);

[VB]

Dim vContextMenu As PeterBlum.DES.ContextMenu = _
 New PeterBlum.DES.ContextMenu()
vContextMenu.ID = "ContextMenu1"
PlaceHolder1.Controls.Add(vContextMenu)

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Add menu items to the Items property.

 Adding a PeterBlum.DES.MenuCommandItem to the ContextMenu

 Adding a PeterBlum.DES.MenuSeparator to the ContextMenu

 Adding a PeterBlum.DES.MenuHint to the ContextMenu

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 228 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

4. Connect the context menu to controls where it will popup when the mouse is clicked. You can specify which mouse
button (left or right) and either a web control or the entire document area of the page. See “Adding a
PeterBlum.DES.ClickItem to the ContextMenu”.

5. If desired, set up your ProcessCommand function script on the page and assign its name to the
ProcessCommandFunctionName property. See “ProcessCommandFunctionName property”.

6. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoContextMenu.aspx. See also “Complete Example”.

http://www.peterblum.com/DES/DemoContextMenu.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 229 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Complete Example

ASP.NET Declarative Syntax

This example consolidates the previous examples for ASP.NET.

<des:ContextMenu id="ContextMenu1" runat="server" [various properties]>
 <des:MenuCommandItem CommandID="100" CommandLabel="Show Cards"
 OnClickScript="ShowCards();" />
 <des:MenuCommandSeparator />
 <des:MenuCommandItem CommandID="101" CommandLabel="Bid $10"
 CommandKey="B" OnClickScript="Bid(10.00);" />
 <des:MenuHint Hint="Maximum bet is $50" />
 <ClickList>
 <des:ClickItem ControlID="TextBox1" MouseButtonType="Left" />
 <des:ClickItem ControlID="" MouseButtonType="Right" />
 </ClickList>
</des:ContextMenu>

Programmatic Example

This example consolidates the previous examples for programming.

[C#]

protected void Page_Load(object sender, System.EventArgs e)
{
 ContextMenu1.AddCommand(100, "Show Cards", "", "ShowCards();");
 ContextMenu1.AddCommand(101, "Bid $10", "B", "Bid(10.00);");
 ContextMenu1.AddSeparator();
 ContextMenu1.AddHint("Maximum bet is $50");

 ContextMenu1.AddClickItem("MyTextBoxID", MouseButtonType.Left);
 ContextMenu1.AddClickItem("", MouseButtonType.Right);
}

[VB]

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ContextMenu1.AddCommand(100, "Show Cards", "", "ShowCards();")
 ContextMenu1.AddCommand(101, "Bid $10", "B", "Bid(10.00);")
 ContextMenu1.AddSeparator()
 ContextMenu1.AddHint("Maximum bet is $50")

 ContextMenu1.AddClickItem("MyTextBoxID", MouseButtonType.Left)
 ContextMenu1.AddClickItem("", MouseButtonType.Right)
End Sub

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 230 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties of the Context Menu
The Context Menu is subclassed from the Microsoft supplied control Panel (System.Web.UI.WebControls.Panel). See
System.Web.UI.WebControls.Panel Members for any properties inherited from Panel.

Click on any of these topics to jump to them:

 Menu Structure Properties

 Menu Item Appearance Properties

 Overall Appearance Properties

 Popup Behavior Properties

 Behavior Properties

 Popup Location Properties

Properties on other classes. Click on any of these topics to jump to them:

 Properties for PeterBlum.DES.MenuCommandItem

 Properties for PeterBlum.DES.MenuCommandSeparator

 Properties for PeterBlum.DES.MenuHint

 Properties for PeterBlum.DES.ClickItem

Menu Structure Properties
The Properties Editor lists these properties in the “Menu Structure” category.

 Items (PeterBlum.DES.MenuCommandList) – A collection of the items that are displayed in the context menu,
including menu commands, menu separators, and hints. Add PeterBlum.DES.MenuCommandItem (commands),
PeterBlum.DES.MenuSeparator (separators), and PeterBlum.DES.MenuHint (hints) objects to it.

See these topics to learn more:

 Menu Command Rows

 Menu Separator Rows

 Menu Hint Rows

 ClickList (PeterBlum.DES.ClickList) – A list of controls that will popup the context menu. Add
PeterBlum.DES.ClickItem objects to it.

See “Click Items: Adding Controls Which Popup The ContextMenu”.

http://msdn2.microsoft.com/en-us/library/system.windows.forms.panel_members.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 231 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Menu Item Appearance Properties
The Properties Editor lists these properties in the “Menu Item Appearance” category.

 CommandRowCssClass (string) – A style sheet class name applied to rows showing a menu command
(PeterBlum.DES.MenuCommandItem class).

A row is defined in HTML by a <div> tag assigned to this style sheet class and contains two <div> tags. The left
<div> tag displays the command label (MenuCommandItem.CommandLabel). The right <div> tag displays the
keystroke (MenuCommandItem.CommandKey).

Use the style sheet classes DESMenuLabel for the command label and DESMenuKey for the keystroke. To achieve the
correct appearance, DESMenuLabel and DESMenuKey use special positioning attributes of float and
position:relative. At times, the label and key will overlap due to these attributes. When that happens, increase
the width of the control in the Width property.

<div class="DESMenuCommand">
 <div class="DESMenuLabel">Command Label</div>
 <div class="DESMenuKey">Command Key</div>
</div>

It defaults to "DESMenuCommand".

This style is declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenuCommand
{
 height:20px;
 padding-top:4px;
}

 CommandLabelCssClass (string) – The style sheet class name applied to the CommandLabel of the
MenuCommandItem. See above for the structure of a Menu Command Row.

It defaults to "DESMenuLabel".

To achieve the correct appearance, DESMenuLabel uses special positioning attributes of float and
position:relative. At times, the label and key will overlap due to these attributes. When that happens, increase
the width of the control in the Width property.

This style is declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenuLabel
{
 text-align:left;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. If these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
 float:left;
 position:relative;
 left:16px;
}

 CommandKeyCssClass (string) – The style sheet class name applied to the CommandKey of the MenuCommandItem.
See above for the structure of a Menu Command Row.

It defaults to "DESMenuKey".

To achieve the correct appearance, DESMenuKey uses special positioning attributes of float and
position:relative. At times, the label and key will overlap due to these attributes. When that happens, increase
the width of the control in the Width property.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 232 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

This style is declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenuKey
{
 text-align:left;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. If these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
 float:right;
 position:relative;
 left:-16px;
}

 CommandHintCssClass (string) – The style sheet class name applied to hint rows, as defined by
PeterBlum.DES.MenuHint objects. Hints should look different from menu commands. So the default style sheet
provides a different font color, background color, and establishes borders.

It defaults to "DESMenuHint".

This style is declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenuHint
{
 color: #a52a2a; /* brown */
 background-color: #ffff99;
 border-right: #d3d3d3 thin inset;
 border-top: #d3d3d3 thin inset;
 border-left: #d3d3d3 thin inset;
 border-bottom: #d3d3d3 thin inset;
 padding-top: 2px;
 padding-left: 2px;
 padding-right: 2px;
 padding-bottom: 2px;
 margin-left: 2px;
 margin-right: 2px;
}

 SeparatorCssClass (string) – The style sheet class name applied to menu separator rows, as defined by
PeterBlum.DES.MenuCommandSeparator objects.

It defaults to "DESMenuSeparator". This class defines the overall height of the separator line. The horizontal line
itself is a second style sheet class that uses the border attribute to create the line. It always must declare a second class
name of “Line” after the same name used in the SeparatorCssClass property.

For example, when SeparatorCssClass = “SeparatorClass”:

.SeparatorClass .Line

These styles are declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenuSeparator
{
 height:6px;
 font-size:2pt;
}

.DESMenuSeparator .Line
{
 border-top: #a9a9a9 1px solid;
 width: 100%;
 height: 1px;
 margin-top: 2px;
 margin-bottom: 2px;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 233 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 MouseOverCssClass (string) – The style sheet class name that creates the mouseover effect on Menu Command Rows.

It can be merged with the current style sheet name by putting a + character before the style sheet name in the
MouseOverCssClass property. When + is before the name, the actual class will be [normalclass] [thisclass].

When there is no leading + character, only this class is applied to the row.

It defaults to "+DESMenuMouseOver". The default style is designed to merge, by only changing the background color
of Menu Comand Rows.

This style is declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenuMouseOver
{
 background-color: #3366cc;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 234 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Overall Appearance Properties
The Properties Editor lists these properties in the “Overall Appearance” category.

 CssClass – The style sheet class for the overall control. Use it to establish font, background, and borders. Its attributes
can be further customized on individual rows, by using the styles declared by the properties in “Menu Item Appearance
Properties”.

It defaults to "DESMenu". If you want to establish a shadow effect, set the UseShadowEffect property to true.

This style is declared in DES\Appearance\Interactive Pages\Menu.css.

.DESMenu
{
 background-color: white;
 color: black;
 font-size: 8pt;
 font-family: Arial;
 border-right: #a9a9a9 1px solid; /* dark grey */
 border-top: #a9a9a9 1px solid;
 border-left: #a9a9a9 1px solid;
 border-bottom: #a9a9a9 1px solid;
 padding-top: 2px;
 padding-left: 2px;
 padding-right: 2px;
 padding-bottom: 2px;
}

 Font, BackColor, BackImageUrl, BorderStyle, BorderWidth, BorderColor and ForeColor – These properties are
alternatives to using the CssClass property. If you have both assigned, these properties override their counterparts in
CssClass. Recommendation: Use the style sheet class defined in CssClass.

 Width (System.Web.UI.WebControls.Unit) – The overall width of the context menu. It should be adjusted based on the
largest command label and keystroke, because they may overlap each other if the width is too small. It defaults to 200px.

 Height (System.Web.UI.WebControls.Unit) – When unassigned, the menu establishes its size to fit all menu items that
are shown. If you have many menu items, the height may need to be limited to fit on the page. When set, the menu will
add a vertical scrollbar so the user can move through all commands. It is unassigned by default.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 235 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Popup Behavior Properties
These properties affect how the popup panel pops up and down. The Properties Editor lists these properties in the “Popup
Behavior” category.

 UsePopupEffect (Boolean) – When true, Internet Explorer users will see the context menu fade in as it pops up and
fade out as it pops down. This effect can be customized. See “Customizing the Popup Effect” in the Date and Time
User’s Guide. It defaults to true.

Note: On pages that are very large, either in bytes or screen real-estate, this feature can cause popups and popdowns to
have a delay. Set this property to false when that is the case.

 IsPopup (Boolean) – When menu can popup or be displayed full time as a control on the page. When true, it pops up.
When false, it does not. It defaults to true.

 OnPopup (string) – Specify a client side JavaScript function that is called when the control is popping up. It is called
just prior to making the control visible. Use it to transfer data into the popup. It should not include the heading
"javascript:". It should always conclude with a semicolon or end brace as multiple users can append or prefix any code
you add with their own code. It defaults to "".

 OnPopDown (string) - Specify a client side JavaScript function that is called when the control is popping down. It is
called just prior to making the control invisible. Use OnPopDown for any cleanup that always happens on pop down. It
should not include the heading "javascript:". It should always conclude with a semicolon or end brace as multiple users
can append or prefix any code you add with their own code. It defaults to "".

 IEFixPopupOverList (Boolean) – Internet Explorer for Windows versions 5.0 through 6. have a problem allowing
absolutely positioned objects appearing over ListBox and DropDownLists. There is a special hack that uses an IFrame
and filter style sheet to make it appear like it’s over these controls. This property enables that hack on IE versions 5.5-6.
(IE 5 doesn't support the hack; IE 7 doesn't require the hack.)

The hack is imperfect. It breaks when another IFrame is in the same area of the page. By "breaks", this means the popup
usually looks incorrect including being transparent.

When the ASP.NET SmartNavigation feature is enabled on the page, it installs an IFrame and causes the same problem.

Turn off the hack to work around this problem. Set this property to false. But you should only do this when the popup
does not overlap any listboxes or dropdownlists. If there is overlap, you have to make a design decision to change your
positioning or avoid using the IFrame.

When true, the hack is used when the browser is Internet Explorer for Windows versions 5.5 through 6..

When false, the hack not used. Choose this when the hack causes visual problems such as a transparent popup.

It defaults to true.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 236 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Behavior Properties
The Properties Editor lists these properties in the “Behavior” category.

 Visible (Boolean) – When false, the control does not output any HTML. The control is effectively turned off. It
defaults to true.

When false, no HTML is written to the page. If you want to be able to show and hide the control on the client-side, leave
this property set to true so that all of the HTML is generated. Then use the FieldStateController to change the
visibility. See the Interactive Pages User’s Guide for details on the FieldStateController.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 ProcessCommandFunctionName (string) – Optional client-side function that is called when a menu item is selected.
This function allows standardized code to be in one place that handles multiple commands. For example, the
DateTextBox predefines a mapping to each command and has a function to handle its commands in its script file. It also
allows multiple controls to use the same context menu by supplying two variables from each
PeterBlum.DES.ClickItem object's Variable1InScript and Variable2InScript properties.

The ProcessCommand function takes these parameters:

o CommandID - Integer. The command ID that was invoked. Its value comes from the
MenuCommandItem.CommandID. If the MenuCommandItem.CommandID is 0, it never calls your
ProcessCommand function.

o Args – JavaScript object containing the following properties:

 MenuID - string. ClientID of the ContextMenu control that invoked this function.

 TglID - string. “ToggleID”. ClientID of the control that activated the menu. If null, document.body
activated this menu. Use the DES_GetById() function if you need to convert TglID into its DHTML
element.

 Token1 - The value from ClickItem.Variable1InScript. It may be null.

 Token2 - The value from ClickItem.Variable2InScript. It may be null.

 Src - The DHTML element associated with the click that opens the menu. It may not be the same as the
control associated with the ClickItem, especially because the control contains child HTML elements and
the actual HTML element under the mouse pointer is what is returned. You may have to search through the
parent elements to find the desired element.

This property will be null if the menu was invoked without a mouse click, such as through a keystroke
command.

Your function should return true to continue running scripts and false if no further processing should occur.

Note: Many users make the mistake of assigning JavaScript code to the ProcessCommandFunctionName property. This
will cause JavaScript errors. GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of ProcessCommandFunctionName exactly matches the function
definition.

See also “Adding Your JavaScript to the Page”.

PeterBlum.DES.MenuCommandItems will run validation, confirm message, and the OnClickScript before
calling this function.

EXAMPLES START ON THE NEXT PAGE

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 237 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: Using multiple CommandIDs

This example is a snippet from the DES DateTextBox’s context menu function. It assumes
ClickItem.Variable1InScript is the id of the DateTextBox so it knows how to update that control’s value. The
ProcessCommandFunctionName property is assigned “DES_DTBMenuCmd”. The script functions are documented in
the Date and Time User’s Guide.

function DES_DTBMenuCmd(pCmdID, pArgs)
{
 var vDTB = DES_GetById(pArgs.Token1); // contains id to textbox
 switch (pCmdID)
 {
 case 10: // next day
 DES_DTBAddDays(vDTB, -1);
 break;
 case 11: // previous day
 DES_DTBAddDays(vDTB, 1);
 break;
 case 2: // today
 DES_DTBTodayCmd(vDTB);
 break;
 }
 return true;
}

ANOTHER EXAMPLE IS ON THE NEXT PAGE

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 238 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Example: Using the Args.Src property

A DES Calendar control needs an “Add Appointment” command for each date in the menu. It will use this instead of the
predefined context menu offered by the calendar. It defines the command ID 1000 whose task is to determine the date of
the selected cell, write that date as a string to a hidden field and postback. On the server side, the ContextMenu
MenuSelected event is used to retrieve that string, convert it to a DateTime, and use it.

<script type="text/javascript">
function AddAppointment(pCmdID, pArgs)
{
 if (pCmdID != 1000) return false; // error check against invalid commands

 if (pArgs.Src == null) return false;

 // Use pArgs.Src to get the DHTML element that invoked the context menu
 // Convert that to the Date of the date cell. If not found, stop
 // The Calendar assigns a property called "Date" to each Date cell.
 // That is used to detect the DateCell and get the javascript date object
 var vDate = null;
 var vCellRole = null;
 for (var vSE = pArgs.Src; (vSE != document) && (vSE != null);
 vSE = vSE.parentNode)
 {
 if (vSE.Date) // found a Date cell
 {
 vDate = vSE.Date;
 vCellRole = vSE.CellRole;
 break;
 }
 }

 if (vDate == null)
 {
 alert("Please click on a date element of the calendar.");
 return false;
 }

 // vCellRole determines the context of the cell.
 // Values 0-9 indicate a selectable date in the current month.
 // 10 and 11 indicate a selectable date in the previous and next months
 // respectively. All values above 11 are unselectable.
 // 12 = unselectable due to SpecialDates.
 // 14 = out of range MinDate-MaxDate
 if (vCellRole > 11)
 {
 if (vCellRole == 12)
 alert("That date cannot be selected for an appointment.");
 return false;
 }

 var vStorage = DES_GetById("<% =DateSelected.ClientID %>");
 var vFormattedDate = DES_FmtDate2(vDate, "yyyy-MM-dd", 0, null);
 vStorage.value = vFormattedDate; // save for postback to use
 return true;
}

</script>

CONTINUED ON THE NEXT PAGE

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 239 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

<des:Calendar ID="Calendar1" runat="Server" EnableContextMenu="false" />
<des:ContextMenu ID="ContextMenu" runat="server"
 ProcessCommandFunctionName="AddAppointment"
 OnMenuSelected="ContextMenu_MenuSelected">
 <des:MenuCommandItem CommandID="1000" CommandLabel="Add Appointment"
 PostBack="True" />
 <ClickList>
 <des:ClickItem ControlID="Calendar1" MouseButtonType="Right" />
 </ClickList>
</des:ContextMenu>
<asp:HiddenField ID="DateSelected" runat="server" />

[C#]

protected void ContextMenu_MenuSelected(object pSender,
 PeterBlum.DES.MenuCommandIDEventArgs pArgs)
{
 if (pArgs.CommandID != 1000) return;

 if (!String.IsNullOrEmpty(DateSelected.Value))
 {
 DateTime vDateSelected;

 if (DateTime.TryParse(DateSelected.Value, out vDateSelected))
 {
 // use the Date
 // Example: Select the date
 Calendar1.SelectedDate = vDateSelected;
 }
 }
}

[VB]

Protected Sub ContextMenu_MenuSelected(ByVal pSender As Object, _
 ByVal pArgs As PeterBlum.DES.MenuCommandIDEventArgs)

 If pArgs.CommandID != 1000 Return

 If Not String.IsNullOrEmpty(DateSelected.Value) Then
 Dim vDateSelected As DateTime

 If DateTime.TryParse(DateSelected.Value, vDateSelected) Then
 ' use the Date
 ' Example: Select the date
 Calendar1.SelectedDate = vDateSelected
 End If
 End If
End Sub

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 240 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 EnableItemsFunctionName (string) - You can add a JavaScript function that makes commands visible or invisible prior
to popping up. Use a function when commands vary based on conditions of the page. In this property, define the name of
a client-side function that will indicate if a menu command is enabled (actually visible) based on its CommandID.

Your function will be called as the context menu is popped up. Every commandID will be passed to your function, one at
a time. Your function should evaluate the commandID and return either true to show it or false to hide it.

The function takes two parameters, the ClientID of the ContextMenu and the CommandID. It must return true or false.

The value from ClickItem.Variable1InScript is found in the global variable gDES_Menu.Token1. The value of
ClickItem.Variable2InScript is found in the global variable gDES_Menu.Token2. So both are available to your
code.

It defaults to "".

Note: Many users make the mistake of assigning JavaScript code to the EnableItemsFunctionName property. This will
cause JavaScript errors. GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of EnableItemsFunctionName exactly matches the function
definition.

See also “Adding Your JavaScript to the Page”.

Example
function EnableMenu(pMenuID, pCmdID)
{
 // if the context menuID is "ContextMenu1", hide CommandID 20
 if ((pMenuID == "ContextMenu1") &&
 (pCmdID == 20))
 return false;
 return true;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 241 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ClientSideCreatesHTML (enum PeterBlum.DES.ClientSideCreatesHTML) – Determines if some of the HTML is
created on the client-side. This reduces the size of the HTML output, but may slow down the initialization of the page or
the time to first open the popup.

The enumerated type has these values:

o Default – Uses the default from ClientSideCreatesHTMLPopup which is set in the Global Settings
Editor.

o None - Fully created by the server and transferred in the page's HTML.

o EventScripts - While the HTML will be created on the server side, don't create the embedded DHTML
events. Instead, let the client-side set them up. That will reduce the HTML size and put more work on the client-
side during initialization, but not as much as BrowserLoads and FirstPopup.

o BrowserLoads - As the page is loading into the browser. May cause a slightly longer page initialization.

o FirstPopup - When the calendar is first popped up. May cause a delay before the control is popped up.

It defaults to ClientSideCreatesHTML.Default.

Note: When PeterBlum.DES.Globals.Page.Browser.SupportsClientSideCreatesHTML is false, it always prepares
the HTML on the server side.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 242 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Popup Location Properties
Customize how the popup is positioned relative to a control specified in the ClickItem.ControlID property. Only applies on a
left mouse click as right mouse clicks are relative to the mouse position.

The Properties Editor lists these properties in the “Popup Location” category.

 HorizPosition (enum PeterBlum.DES.HorizPosition) - Positions the popup panel relative to the toggle control. It has
these values:

o LeftSidesAlign – Left sides of both controls are flush.

o Center – Objects are centered to each other.

o RightSidesAlign – Right sides of both controls are flush. This is the default.

o PopupToRight – Left side of the popup is flush with the right side of the toggle.

o PopupToLeft – Right side of the popup is flush with the left side of the toggle.

 HorizPositionOffset (Int16) – Adjusts the horizontal position of the popup by a number of pixels to allow more precise
positioning for HorizPosition. If negative, the popup panel moves left. Positive moves right. Zero does nothing. It
defaults to 0.

 VertPosition (enum PeterBlum.DES.VertPosition) – Positions the popup panel relative to the toggle control. It has these
values:

o PopupBelow – Top of the popup is below the toggle. This is the default.

o Center – Objects are centered to each other.

o PopupAbove – Bottom of the popup is above the toggle.

o TopSidesAlign - Tops of both are flush.

 VertPositionOffset (Int16) – Adjusts the vertical position of the popup by a number of pixels to allow more precise
positioning for VertPosition. If negative, the popup panel moves up. Positive moves down. Zero does nothing. It
defaults to 0.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 243 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Enhanced Buttons
The three buttons in ASP.NET – Button, LinkButton, and ImageButton – have been subclassed in DES to extend them in
many ways. Some of the features are needed by the DES Validation Framework (and are documented in the Validation
User’s Guide). The rest are part of Peter’s Interactive Pages and described here.

Click on any of these topics to jump to them:

 Features

 Using the Enhanced Buttons

 Adding an Enhanced Button

 Properties on Enhanced Buttons

 Programmatically Adding These Features to Non-DES Buttons

 The PeterBlum.DES.SubmitBehavior Class

Features
 Use the ConfirmMessage property to display a confirmation message. If the user answers No to the prompt, it will

prevent the postback. Combined with the ChangeMonitor and the ChangeMonitorUsesConfirm property, you can have
the message shown only after an edit occurred.

 Use the ChangeMonitorEnables property to determine when the button is enabled as the ChangeMonitor determines
the page has been edited. When setup, the button is disabled as the page is loaded.

 Use the DisableOnSubmit property to disable the button after the user clicks, to limit the chance of a double
submission.

 Use the MayMoveOnClick property when validation is causing the user to click the button twice before it will submit.
The button is actually moving after the first click because validation is removing its error messages causing the page to
reposition its contents. This property does not require any license.

 Built in support for “Interactive Hints” and “Enhanced ToolTips”.

 When using the DES Validation Framework, validation groups support special tokens to match to all groups (“*”) and
assign group names based on their naming container (“+”). With the SkipPostBackEventsWhenInvalid property, they
can skip calling your Click and Command event handler methods if validation errors are detected. See the Validation
User’s Guide for details.

 ImageButtons can use separate graphic files to provide mouse pressed and mouseover effects. Use the MultipleImages
property or specify a pipe delimited list of URLs in the ImageUrl property.

 ImageButtons will actually dim (using style sheet opacity) when disabled by the ChangeMonitor, DisableOnSubmit
property, or the FieldStateController.

 LinkButtons normally show the contents of their href= attribute, which is javascript code, in the browser’s status bar.
Unless prevented by the browser, DES’s LinkButtons will hide the script from the status bar. If you have a tooltip
assigned, its text is used as a replacement.

The DES buttons are direct subclasses of the native buttons, making it very easy to switch to them.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 244 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the Enhanced Buttons
Start by selecting the Button controls from DES instead of the native controls. When in design mode, the toolbox has them in
the Peter’s Data Entry Suite tab. When in ASP.NET Declarative Syntax, type <des:buttontype> instead of
<asp:buttontype>. When writing code, use the namespace PeterBlum.DES instead of
System.Web.UI.WebControls.

If you already have a page setup with the native controls, run the Web Application Updater with the option Convert
native controls to their DES equivalents as described in the Installation Guide.

From there, set the desired properties as shown in “Features” above. See “Properties on Enhanced Buttons”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 245 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding an Enhanced Button
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. If you have button with existing native button controls, convert them to DES controls by run the Web Application
Updater with the option Convert native controls to their DES equivalents as described in the Installation Guide.

3. Add a DES Button, LinkButton, or ImageButton control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the Button, LinkButton, or ImageButton control from the Toolbox onto your web form. Be sure to select DES’s
control, not the native control. Look in the “Peter’s Data Entry Suite” tab.

Text Entry Users

Add the control (inside the <form> area):

<des:Button id="[YourControlID]" runat="server" />

<des:LinkButton id="[YourControlID]" runat="server" />

<des:ImageButton id="[YourControlID]" runat="server" />

Programmatically creating the Button control

 Identify the control which you will add the Button, LinkButton, or ImageButton control to its Controls collection.
Like all ASP.NET controls, the Button can be added to any control that supports child controls, like Panel, User
Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and
use the PlaceHolder.

 Create an instance of the Button, LinkButton, or ImageButton control class. The constructor takes no parameters.

 Assign the ID property.

 Add the Button control to the Controls collection.

In this example, the Button is created with an ID of “Button1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.Button vButton = new PeterBlum.DES.Button();
vButton.ID = "Button1";
PlaceHolder1.Controls.Add(vButton);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vButton As PeterBlum.DES.Button = New PeterBlum.DES.Button()
vButton.ID = "Button1"
PlaceHolder1.Controls.Add(vButton)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 246 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

4. Set the properties associated with the Button, LinkButton, or ImageButton. See “Properties on Enhanced Buttons”.

5. If you want a confirmation message, set it in the ConfirmMessage property.

6. If you want to disable this button on submit, set DisableOnSubmit to true.

7. If you are using the ChangeMonitor, review the setting of ChangeMonitorEnables. By default, it enables the button
after a change only when CausesValidation is true.

8. If you are using validation, set the desired validation group in the Group property. If this button should not validate, set
CausesValidation to false. If the button may move due to a validation error showing or hiding, set
MayMoveOnClick to true.

9. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 247 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties on Enhanced Buttons
These controls are subclassed from the native ASP.NET buttons. This section describes properties introduced or important to
DES. For the rest, see: System.Web.UI.WebControls.Button,
System.Web.UI.WebControls.LinkButton, and System.Web.UI.WebControls.ImageButton.

Click on any of these topics to jump to them:

 Behavior Properties

 ChangeMonitor Properties

 Validation Properties

 Hint and ToolTip Properties

 Appearance Properties

Behavior Properties
 ConfirmMessage (string) – Displays a confirmation message when the button is clicked. It uses the JavaScript function

confirm() which shows the text of this property and offers OK and Cancel buttons. (You cannot customize the title or
buttons.) When the user clicks OK, the page will submit. If they click Cancel, it will not.

When using the DES Validation Framework on this page, it has its own confirmation message in
PeterBlum.DES.Globals.Page.ConfirmMessage. When assigned, this button’s property overrides the other property.
You also need to determine if the confirmation message shows prior to validation or after validation reports no errors.
Use the PeterBlum.DES.Globals.Page.SubmitOrder property, which by default shows the confirmation message
before it attempts to validate.

When using the ChangeMonitor, the confirmation message can appear based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property.

 ConfirmMessageLookupID (string) – Gets the value for ConfirmMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of ConfirmMessages. If no match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 DisableOnSubmit (Boolean) – When true, the control will be disabled after the page submits. If an AJAX callback is
used, it disables and re-enables when the callback is completed.

It defaults to false.

 MayMoveOnClick (Boolean) – If the button requires an extra click to submit the page, its because it jumped as the user
clicks on it. Set this to true to avoid that extra click.

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When true, the feature is enabled.

It defaults to false.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 Visible (Boolean) – When false, no HTML is output. This control is entirely unused. It defaults to true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.button.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 248 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ChangeMonitor Properties
 ChangeMonitorEnables (enum PeterBlum.DES.ChangeMonitorEnablesSubmitControl) – Determines if the button

switches its state between disabled and enabled. When enabled, the button is disabled as the page is loaded. After the
first edit, it becomes enabled.

The enumerated type PeterBlum.DES.ChangeMonitorEnablesSubmitControl has these values:

o No - The button will not change its enable state.

o Yes - The button will change its enabled state.

o CausesValidationIsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

o CausesValidationIsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl.CausesValidationIsTrue.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their
appearance by changing the opacity of the button when the state is changed by the ChangeMonitor.

 ChangeMonitorGroups (string) – When using the ChangeMonitor, the group name(s) defined here is marked changed
when the button is edited.

The button’s Group property is used by the ChangeMonitor unless ChangeMonitor.UseValidationGroups is false.
(ChangeMonitor is accessed programmatically through PeterBlum.DES.Globals.Page and in the PageManager
control.)

Unless the Group property does not specify the desired group, you can leave this blank.

The ChangeMonitor is enabled when ChangeMonitor.Enabled to True or the global setting
DefaultChangeMonitorEnabled is True in the Global Settings Editor.

The value of "" is a valid group name.

For a list of group names, use the pipe character as a delimiter. For example: "GroupName1|GroupName2". If one of the
groups has the name "", start this string with the pipe character: "|GroupName2".

Use "*" to indicate all groups apply.

It defaults to "".

 ChangeMonitorUsesConfirm (enum PeterBlum.DES.ChangeMonitorUsesConfirm) – When the button uses a
confirmation message from its ConfirmMessage property, it normally displays the message on any click. When using
the ChangeMonitor, you can make it display based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property on the button.

The enumerated type PeterBlum.DES.ChangeMonitorUsesConfirm has these values:

o No - ChangeMonitor does not affect the confirmation message.

o Changed - Only show the confirmation message if changes were made.

o NotChanged - Only show the confirm message if NO changes were made.

It defaults to ChangeMonitorUsesConfirm.No.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 249 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Validation Properties
 Group (string) – Only used by the DES Validation Framework. Group determines which validators are invoked when

this button is clicked. Those that match the value in this will be run.

The ValidationGroup property, inherited from the base class, also works the same way. If you assign both, Group
overrides ValidationGroup.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.

You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name.

Note: The pipe character (|) feature is not supported to allow a delimited list of groups. The delimited list feature is only
supported on Validators and ValidationSummary controls.

Just be sure to use an identical name in the validators associated with this button.

It defaults to "".

 CausesValidation (string) – Determines if the button fires validators. When true it does.

It defaults to true.

It fires validators first on the client-side. Then again on the server side immediately before calling your Click or
Command event handler method. You should always set up server side validation as follows:

DES Validation Framework

You can have the button never call your Click or Command event handler by setting
SkipPostBackEventsWhenInvalid property to TrueFalseDefault.True or use the global setting
ButtonsSkipPostBackEventsWhenInvalid in the “Other Validation Properties” topic of the Global Settings Editor.

Otherwise, test PeterBlum.DES.Globals.Page.IsValid is true before saving or otherwise using the data from the page.

Native Validation Framework

Test Page.IsValid is true before saving or otherwise using the data from the page.

 SkipPostBackEventsWhenInvalid (enum PeterBlum.DES.TrueFalseDefault) – Determines if the button fires its server-
side Click and Command events when there are validation errors detected.

Only applies to buttons that have CausesValidation = true.

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True - When CausesValidation is true, the Click and Command events are fired only when IsValid is
true. When CausesValidation=false, the events always fire.

o False - The Click and Command events are always fired on postback.

o Default - Determine the value from the global setting ButtonsSkipPostBackEventsWhenInvalid, which
defaults to true. It is set in the “Other Validation Properties” topic of the Global Settings Editor.

It defaults to TrueFalseDefault.Default.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 250 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Hint and ToolTip Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

For an overview, see “Interactive Hints”.

The Properties Editor shows these properties in the “Hint” category for hints and “Appearance” for ToolTips.

Note: The terms “Hint” and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the
message when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse
points to the control. It can be used on almost any type of control.

 Hint (string) – When using the Interactive Hints system, this is the text of the hint.

When blank, if the TextBox is using its ToolTip property, the ToolTip is used as the text of the hint unless you set the
HintManager.ToolTipsAsHints property to False.

HTML tags are permitted. ENTER and LINEFEED characters are not. Use the token “{NEWLINE}” where you need a
linefeed.

When the hint is shown in the browser's status bar, HTML tags will automatically be stripped.

It defaults to "".

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “The String Lookup System”
in the General Features Guide.) The LookupID and its value should be defined within the String Group of Hint. If no
match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HintHelp (string) – When the Hint uses a PopupView, this provides data for use by the Help Button and other features
on the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The HintHelp property is not used.

o ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

o ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 251 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

This defaults to "".

 HintHelpLookupID (string) – Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of Hint. If no match is found OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 SharedHintFormatterName (string) – Specify the name of the desired HintFormatter object found in
HintManager.SharedHintFormatters. (HintManager is accessed programmatically through
PeterBlum.DES.Globals.Page and in the PageManager control.) Alternatively, specify the name of a PopupView
defined in the “PopupView definitions used by HintFormatters” of the Global Settings Editor.

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its name,
display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

The HintManager.SharedHintFormatters property defines various ways to display a hint with
PeterBlum.DES.HintFormatter objects. It lets you share a HintFormatter definition amongst controls on this
page. It not only makes changes to the HintFormatter quick, but it also reduces the JavaScript output. If you want to
create a HintFormatter specific to this control, set SharedHintFormatterName to "" and edit the properties of
LocalHintFormatter (see below).

If you specify the name of a PopupView and there is a definition with that name, a HintFormatter is automatically added
to HintManager.SharedHintFormatters with its name matching the name of the PopupView. This is an easy way to
work with PopupViews without the extra step of setting up HintFormatters. The HintFormatter defined will also show
the hint as a tooltip but it will not show the hint in the status bar. If you need more control over the HintFormatter’s
properties, you must create the HintFormatter yourself.

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details on the
PeterBlum.DES.HintFormatter class and setting up HintManager.SharedHintFormatters.

Use the token "{DEFAULT}" to get the name from HintManager.DefaultSharedHintFormatterName.

It defaults to “{DEFAULT}”.

 LocalHintFormatter (PeterBlum.DES.HintFormatter) – When none of the HintFormatter objects defined in
HintManager.SharedHintFormatters is appropriate, use this property. (HintManager is accessed programmatically
through PeterBlum.DES.Globals.Page and in the PageManager control.)

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its display
mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more. See the “Interactive Hints”
section of the Interactive Pages User’s Guide for directions on using the PeterBlum.DES.HintFormatter
class.

You must set SharedHintFormatterName to "" for this to be used.

 ToolTip (string) – When assigned, a tooltip with this text is shown when the user points to the textbox. If you are using
the Hint feature, it can be used as the hint when the Hint property is "". When using the “Enhanced ToolTips” feature,
the browser’s tooltip will be replaced by a PopupView.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 252 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ToolTipUsesPopupViewName (string) – When using the “Enhanced ToolTips” feature, this determines which
PopupView definition is used. Specify the name from the PopupView definition or use the token “{DEFAULT}” to
select the name from the global setting DefaultToolTipPopupViewName, which is set with the Global Settings
Editor.

A PopupView definition describes the name, style sheets, images, behaviors, and size of a PopupView. Use the Global
Settings Editor to create and edit these PopupView definitions in the “PopupView definitions used by the
HintManager” section.

Tooltips are only converted to PopupViews when HintManager.EnableToolTipsUsePopupViews is True.
(HintManager is accessed programmatically through PeterBlum.DES.Globals.Page and in the PageManager control.)

Here are the predefined values: LtYellow-Small, LtYellow-Medium, LtYellow-Large, ToolTip-Small,
ToolTip-Medium, and ToolTip-Large. All of these are light yellow. Their widths vary from 200px to 600px.
Those named “ToolTip” have the callout feature disabled. Those named “LtYellow” have the callout feature enabled.

It defaults to “{DEFAULT}”.

Note: When the name is unknown, it also uses the factory default. This allows the software to operate even if a
PopupView definition is deleted or renamed.

Note: When the HintManager.ToolTipsAsHints feature is enabled, anything other than “” or “{DEFAULT}” assigned to
ToolTipUsesPopupViewName will prevent the ToolTip text from being assigned as a Hint. You must explicitly assign the
Hint text if you want the tooltip and hint to share the same text.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 253 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Appearance Properties
Most of the properties that provide the appearance of the buttons is documented here:
System.Web.UI.WebControls.Button, System.Web.UI.WebControls.LinkButton, and
System.Web.UI.WebControls.ImageButton.

The Properties Editor shows these properties in the “Appearance” category.

 ImageUrl (string) – ImageButton only. The Url to the image file. No initial image is supplied, so always assign it.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

License Note: Requires a license for Peter's Interactive Pages.

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The ImageUrl property should refer to the normal image. Set MultipleImages to true and DES will detect the
presence of the other two files. If any are missing, DES continues to use the normal image for that case. Note: Auto
detection only works when the URL is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 WhenDisabledImageUrl (string) – ImageButton only. The Url to the image file shown when the button is disabled. No
initial image is supplied, so always assign it.

License Note: This property requires a license for Peter's Interactive Pages.

 MultipleImages (boolean) – ImageButton only. When true, you have images for pressed and mouseover effects. The
ImageUrl points to the normal graphic. Pressed and MouseOver are files in the same folder with the "Pressed" and
"MouseOver" inserted in name, just before the file extension.

The code will detect the presence of these files. If neither are found, it is not used. If one is found, it is used and the other
is not. So it is safe to set this to true all of the time, except for the extra overhead of time used.

The PeterBlum.DES.Globals.Page.EnableButtonImageEffects property can override this behavior.

When false, it does not look for multiple images. However, the ImageUrl can override this by having a pipe delimited
list of URLs in this format: Normal|Pressed|MouseOver.

When true, it looks for multiple images.

It defaults to false.

License Note: This property requires a license for Peter's Interactive Pages.

 WhenDisabledCssClass (string) –The style sheet class used when the button is disabled. When unassigned, it is not
used. It defaults to "".

Note: FireFox does not support this for LinkButtons. It does not have a disabled mode for <a> tags.

License Note: This property requires a license for Peter's Interactive Pages.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.button_methods.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton_methods.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton_methods.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 254 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Programmatically Adding These Features to Non-DES Buttons
You can add some of these features to non-DES buttons in two ways, through the NativeControlExtender or through writing
code. This section shows how to write code to update non-DES buttons.

The features supported here are the ConfirmMessage, DisableOnSubmit, MayMoveOnClick, ChangeMonitor, and DES
validation. See “Adding a Hint to any Control Programmatically:
PeterBlum.DES.Globals.Page.AddHintToControl Method” for using Interactive Hints on your controls.

There are three steps to programmatically connecting these features to your submit control.

1. Create a PeterBlum.DES.SubmitBehavior object. The constructor takes a reference to your control. See
“Constructors”.

2. Assign the desired properties. See “Properties”.

3. Pass the object to PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl().

Example

Adds DisableOnSubmit and validation group “group1” to Button1.

[C#]

PeterBlum.DES.SubmitBehavior vSubmitBehavior =
 new PeterBlum.DES.SubmitBehavior(Button1);
vSubmitBehavior.DisableOnSubmit = true;
vSubmitBehavior.Group = "group1";
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl(vSubmitBehavior);

[VB]

Dim vSubmitBehavior As PeterBlum.DES.SubmitBehavior = _
 New PeterBlum.DES.SubmitBehavior(Button1)
vSubmitBehavior.DisableOnSubmit = True
vSubmitBehavior.Group = "group1"
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl(vSubmitBehavior)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 255 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

The PeterBlum.DES.SubmitBehavior Class

Properties

 SubmitControl (System.Web.UI.WebControl.Control) – The control that is getting the additional functionality. It is
always assigned the constructor of this class.

 Group (string) – Only used by the DES Validation Framework. Group determines which validators are invoked when
this button is clicked. Those that match the value in this will be run.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.

You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name. (This is
supported for multiple group names with "+groupname|+groupname2".)

Just be sure to use an identical name in the validators associated with this button.

It defaults to "".

 CausesValidation (string) – Determines if the button fires DES Framework Validators on the client side. When true it
does.

It defaults to true.

It only validators on the client-side. You still must set up server side validation in your control’s post back event handler
method like this:

[C#]

PeterBlum.DES.Globals.Page.Validate("validation group name");
if (PeterBlum.DES.Globals.Page.IsValid)
{
 // save or use the page data here
}

[VB]

PeterBlum.DES.Globals.Page.Validate("validation group name")
If PeterBlum.DES.Globals.Page.IsValid Then
 ' save or use the page data here
End If

If you have no validation group, you can pass "" or call Validate() without any parameter.

 ConfirmMessage (string) – Requires a license covering the Interactive Pages module. Displays a confirmation message
when the button is clicked. It uses the JavaScript function confirm() which shows the text of this property and offers
OK and Cancel buttons. (You cannot customize the title or buttons.) When the user clicks OK, the page will submit. If
they click Cancel, it will not.

When using the DES Validation Framework on this page, it has its own confirmation message in
PeterBlum.DES.Globals.Page.ConfirmMessage. When assigned, this button’s property overrides the other property.
You also need to determine if the confirmation message shows prior to validation or after validation reports no errors.
Use the PeterBlum.DES.Globals.Page.SubmitOrder property, which by default shows the confirmation message
before it attempts to validate.

When using the ChangeMonitor, the confirmation message can appear based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property.

 DisableOnSubmit (Boolean) – Requires a license covering the Interactive Pages module. When true, the control will
be disabled after the page submits. If an AJAX callback is used, it disables and re-enables when the callback is
completed. To disable, DES sets the disabled property to true in the HTML element for the Submit control. If that
element is an <input type="image"> or , it changes the opacity of the control to dim it.

It defaults to false.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 256 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 MayMoveOnClick (Boolean) – If the button requires an extra click to submit the page, it’s because it jumped as the user
clicks on it. Set this to true to avoid that extra click.

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When true, the feature is enabled.

It defaults to false.

 ChangeMonitorEnables (enum PeterBlum.DES.ChangeMonitorEnablesSubmitControl) – Requires a license covering
the Interactive Pages module. Determines if the button switches its state between disabled and enabled. When enabled,
the button is disabled as the page is loaded. After the first edit, it becomes enabled.

The enumerated type PeterBlum.DES.ChangeMonitorEnablesSubmitControl has these values:

o No - The button will not change its enable state.

o Yes - The button will change its enabled state.

o CausesValidationIsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

o CausesValidationIsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl.CausesValidationIsTrue.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their
appearance by changing the opacity of the button when the state is changed by the ChangeMonitor.

 ChangeMonitorUsesConfirm (enum PeterBlum.DES.ChangeMonitorUsesConfirm) – Requires a license covering the
Interactive Pages module. When the button uses a confirmation message from its ConfirmMessage property, it normally
displays the message on any click. When using the ChangeMonitor, you can make it display based on the changed state
of the page. Use the ChangeMonitorUsesConfirm property on the button.

The enumerated type PeterBlum.DES.ChangeMonitorUsesConfirm has these values:

o No - ChangeMonitor does not affect the confirmation message.

o Changed - Only show the confirmation message if changes were made.

o NotChanged - Only show the confirm message if NO changes were made.

It defaults to ChangeMonitorUsesConfirm.No.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 257 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Constructors

The following constructors have parameters that match various properties shown above.

[C#]

SubmitBehavior(Control pSubmitControl)

SubmitBehavior(Control pSubmitControl, string pValidationGroup)

SubmitBehavior(Control pSubmitControl, string pValidationGroup,
 string pConfirmMessage)

[VB]

SubmitBehavior(ByVal pSubmitControl As Control)

SubmitBehavior(ByVal pSubmitControl As Control, _
 ByVal pValidationGroup As String)

SubmitBehavior(ByVal pSubmitControl As Control, _
 ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 258 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ChangeMonitor
The ChangeMonitor watches for edits in the form and changes the appearance of buttons and other fields upon the first
detected edit.

The classic case is to have a disabled OK button that gets enabled as you start typing. Another case is to show a message like
“This form has changed” in a label. Both of these cases are handled.

DES’s enhanced buttons are already capable of showing a confirmation message. With the ChangeMonitor in use, that
message can be shown based on whether or not the user has edited the form.

Click on any of these topics to jump to them:

 Features

 Using the ChangeMonitor

 The ChangeMonitor Property

 Changing the State of Buttons

 Making Data Entry Controls Notify Changes

 Using the FieldStateController

 Using your own JavaScript Code

 Validation Group and ChangeMonitor Groups

 Properties of the PeterBlum.DES.Globals.Page.ChangeMonitor

 ChangeMonitor Properties on Buttons

 ChangeMonitor Server Side Methods

 ChangeMonitor JavaScript Functions

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 259 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Features
 Watches for the first edit made by the user. Prior to that, it establishes an initial state of selected buttons and other

controls. Buttons are usually disabled. After the edit, that state is changed to communicate to the user that an edit has
occurred.

Note: It does not know the original value of controls. So if the user undoes their edit, the state does not revert back.

 The state of the ChangeMonitor is preserved through postbacks and callbacks. So once the page is edited and the user
posts back, as the page is redrawn it still knows that it has been edited and sets buttons and other fields accordingly. Yet,
if the page is posted back and is found to be entirely valid, you can have it draw the page again as if there were no edits.
This helps when the user is entering multiple records with one page.

 DES’s Enhanced Buttons automatically respond to the ChangeMonitor.

 DES’s data entry controls (textboxes, MultiSegmentDataEntry, Calendar, etc) automatically notify the ChangeMonitor
of changes. While most controls signal that they are changed with their DHTML onchange or onclick events, you can
have them signal a change as the user makes an edit using the keyboard.

 Any data entry control with an attached validator (from the DES Validation Framework) automatically notifies the
ChangeMonitor of changes.

 All other data entry controls can notify the ChangeMonitor simply by assigning the NativeControlExtender to them.

 A reset button (<input type='reset' />) reverts buttons controls to their unedited appearance.

 When using different Validation Groups, the page is usually separated into segments with its own buttons.
ChangeMonitor follows the Validation Groups. It will only enable the button associated with the validation group that
was changed. Controls that do not have a way to define a Validation Group have been given a ChangeMonitorGroup
property where a group name can be defined.

 You can define an alternative grouping to Validation Groups. For example, while you have several Validation Groups on
the page, you want all buttons to be enabled.

 You can change the state of any other control by using the FieldStateController with the ChangeMonitorCondition class
in its Condition property. It will update the other control as the ChangeMonitor updates the state of buttons.

 The ChangeMonitor can call your own JavaScript code so you can take other actions as changes are made.

 DES Buttons setup to show a confirmation message can elect to show that confirmation message based on the state of the
page: edited or not.

Use demos here: http://www.peterblum.com/DES/DemoChangeMonitor.aspx.

http://www.peterblum.com/DES/DemoChangeMonitor.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 260 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the ChangeMonitor
Use demos here: http://www.peterblum.com/DES/DemoChangeMonitor.aspx.

There are several parts to the ChangeMonitor:

 The ChangeMonitor property enables the feature and defines its general operation.

 DES Buttons are aware of the ChangeMonitor. Their ChangeMonitorEnables property determines if they respond
to the ChangeMonitor.

 Data entry controls must notify the ChangeMonitor that they have changed.

 Other controls on the page can respond to the ChangeMonitor through the FieldStateController or a call to your own
JavaScript code.

Click on any of these topics to jump to them:

 The ChangeMonitor Property

 Changing the State of Buttons

 Making Data Entry Controls Notify Changes

 Using the NativeControlExtender

 Using the ChangeMonitor.RegisterForChanges() Method

 Using the FieldStateController

 The PeterBlum.DES.ChangeMonitorCondition Class

 Using your own JavaScript Code

 Validation Group and ChangeMonitor Groups

http://www.peterblum.com/DES/DemoChangeMonitor.aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 261 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

The ChangeMonitor Property
The ChangeMonitor property, on the PageManager control and PeterBlum.DES.Globals.Page, enables the ChangeMonitor
and defines its general operation.

When ChangeMonitor.Enabled is TrueFalseDefault.True, it is enabled. Immediately, DES Buttons will disable
themselves when their CausesValidation property is true, until the first change is made that matches the Validation Group
in their Group property. If all you want is to change the state of buttons and your Validation Groups connect to the desired
buttons, there is nothing else you need to do!

ChangeMonitor.Enabled can be set globally using the DefaultChangeMonitorEnabled property in the “ChangeMonitor
Defaults” topic of the Global Settings Editor.

By default, the ChangeMonitor will not detect an edit until the data entry control would notify a validator. For textboxes,
lists, and dropdownlists, that happens on the DHTML onchange event. For radiobuttons and checkboxes, that happens on the
onclick event. When using a textbox, it may feel more natural for the first character typed to notify the ChangeMonitor of
changes. To support this, set MonitorKeystrokes to TrueFalseDefault.True or the global
DefaultChangeMonitor_MonitorKeystrokes to true in the Global Settings Editor.

The ChangeMonitor preserves its state on a postback. This works well if the user submits the page and your code redraws the
same page showing validation errors or requesting additional information. The idea is that a series of postback is still part of
the same edit process so buttons should reflect that. If the page is redrawn but you need the ChangeMonitor to act as if there
have been no edits, there are two ways to handle this:

 Let validation tell the ChangeMonitor that the page is valid. Set ClearIfAllValid to TrueFalseDefault.True
or the global setting DefaultChangeMonitorClearIfAllValid in the Global Settings Editor.

 Call the method ClearChanged() or ClearChangedOnAllGroups() in your server side code. See
“ChangeMonitor Server Side Methods”.

Note: Several additional properties are described in later sections.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 262 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Changing the State of Buttons
The ChangeMonitor notifies DES Buttons when changes occurs. Use the ChangeMonitorEnables property on any DES
Button to switch their state between disabled and enabled. Here are its values:

 No - The button will not change its enable state.

 Yes - The button will change its enabled state.

 CausesValidationIsTrue - When the button's CausesValidation property is true, it will change its enabled
state. This is the default.

 CausesValidationIsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their appearance
by changing the opacity of the button when the state is changed by the ChangeMonitor.

When the DES button uses a confirmation message from its ConfirmMessage property, it normally displays the message on
any click. When using the ChangeMonitor, you can make it display based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property on the button. Here are its values:

 No - ChangeMonitor does not affect the confirmation message.

 Changed - Only show the confirmation message if changes were made.

 NotChanged - Only show the confirm message if NO changes were made.

Using server side code

The PeterBlum.DES.Globals.Page.ChangeMonitor object has several methods that let you modify the state of
the buttons. They are generally used to clear the state after a postback loads fresh data onto the form. See “ChangeMonitor
Server Side Methods”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 263 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Making Data Entry Controls Notify Changes
Each data entry control must notify the ChangeMonitor that it has been changed. DES’s data entry controls automatically
notify the ChangeMonitor. This includes the textboxes, MultiSegmentDataEntry, Calendar, MonthYearPicker, and
TimePicker controls.

For any other data entry controls, you have these options:

 When a DES validator is attached, it will detect changes and notify the ChangeMonitor. This even supports many third
party controls. However, it will not set up the control for keyboard changes when ChangeMonitor.MonitorKeystrokes
is in use. For that, you need the next option.

 Assign the NativeControlExtender to them or call the method RegisterForChanges() on the
PeterBlum.DES.Globals.Page.ChangeMonitor property. When these are used, the client-side controls fire their
DHTML onchange or onclick events to notify the ChangeMonitor. If the ChangeMonitor.MonitorKeystrokes property
is in use, it will also use the onkeypress event to monitor changes. See below.

 If your data entry control is a third party control that does not otherwise trigger the ChangeMonitor, you can write some
JavaScript code that notifies ChangeMonitor by calling DES_CMonSet().

Using the NativeControlExtender

Use the NativeControlExtender when working with design mode or ASP.NET Declarative Syntax. When writing code, see
“Using the ChangeMonitor.RegisterForChanges() Method”. To set up the NativeControlExtender, see the General
Features Guide.

Here is an example with a native TextBox control:

<asp:TextBox id="TextBox1" runat="server" />
<des:NativeControlExtender id="NativeControlExtender1" runat="server"
 ControlIDToExtend="TextBox1" />

Using the ChangeMonitor.RegisterForChanges() Method

Indicates the control is to be monitored for changes. Its client-side onchange or onclick event will be hooked up so the
ChangeMonitor system is notified of a change. If ChangeMonitor.MonitorKeystrokes is in use, it also sets up the
onkeypress event.

[C#]

void RegisterForChanges(Control pControlToRegister,
 string pChangeMonitorGroups)

[VB]

Sub RegisterForChanges(ByVal pControlToRegister As Control,
 ByVal pChangeMonitorGroups As String)

Parameters

pControlToRegister

Control to monitor changes.

pChangeMonitorGroups

One or more change monitor group names. See “Validation Group and ChangeMonitor Groups”.

The empty string ("") is a valid group name. If the page is not using groups, use an empty string.

For match to all groups, use "*".

If a group needs to be different based on its naming container, use "+" as the first character of the group name.

For multiple groups, use a pipe delimited list. For example: “Group1|Group2”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 264 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the FieldStateController
You can change the appearance of almost any control on the page using the FieldStateController (see “FieldStateController
and MultiFieldStateController Controls”). With the FieldStateController.Condition property set to the
PeterBlum.DES.ChangeMonitorCondition object, it will change the state of your control when the ChangeMonitor detects
that the page has been edited.

For example, you want a Label saying “Changes were made. Click Submit to save them” to appear after a change is made.
Here is the ASP.NET Declarative Syntax for that:

<asp:Label id="ChangesWereMadeLabel" runat="server">
 Changes were made. Click Submit to save them</asp:Label>
<des:FieldStateController id="FieldStateController1" runat="server"
 ControlIDToChange="ChangesWereMadeLabel" ConditionFalse-Visible="false" >
 <ConditionContainer>
 <des:ChangeMonitorCondition ChangeMonitorGroups="" />
 </ConditionContainer>
</des:FieldStateController>

The PeterBlum.DES.ChangeMonitorCondition Class

The following list are properties specific to this Condition:

 ChangeMonitorGroups (string) – One or more change monitor group names. See “Validation Group and
ChangeMonitor Groups”.

The empty string ("") is a valid group name. If the page is not using groups, use an empty string.

For match to all groups, use "*".

If a group needs to be different based on its naming container, use "+" as the first character of the group name.

For multiple groups, use a pipe delimited list. For example: “Group1|Group2”.

It defaults to "".

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 265 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using your own JavaScript Code
If you want your own JavaScript code to run when the ChangeMonitor detects changes, use the
ChangeMonitor.OnChangeFunctionName property to specify the name of a function that is called by the ChangeMonitor.

Your function must provide these properties in the order shown:

 GroupName (string) - The group that is being set or cleared. A value of "" is a valid group. A value of "*" indicates
all groups.

 Change (boolean) - When true, the group has just been changed. When false, the group has been cleared of its
change status.

It does not return a result.

Please position this function above the opening form tag to avoid a javascript error. If you have a Reset button on the page,
support pGroup="*" as reset will clear "*".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Example

Changes the visibility of a control whose ClientID is "TextBox1". ChangeMonitor.OnChangeFunctionName is set to
“MyChangeFunction”.

function MyChangeFunction(pGroup, pChange)
{
 if (pChange)
 DES_GetById("TextBox1").style.visibility = "inherit";
 else
 DES_GetById("TextBox1").style.visibility = "hidden";
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 266 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Validation Group and ChangeMonitor Groups
When you are using validators, you may be using their Validation Groups feature to associate specific buttons with specific
validators. The ChangeMonitor respects this grouping. The ChangeMonitor will change the enabled state of the button whose
validation group property (Group or ValidationGroup) matches the validation group name of the validator.

When using Validation Groups, you need to be aware of this.

 When a control is not managed by a validator, it needs the ChangeMonitor to know the correct validation group it is in.
Assign that group to its ChangeMonitorGroups property. When using the NativeControlExtender,
ChangeMonitorGroups is on that control. When using the ChangeMonitor.RegisterForChanges() method,
ChangeMonitorGroups is a parameter.

 When you want a button to respond to more Validation Group names than it has in its Group or ValidationGroup
properties, set those additional groups in its ChangeMonitorGroups property.

o To match to all groups, set ChangeMonitorGroups to “*”.

o To match to two or more additional groups, use a pipe delimited list. For example, “Group1|Group2”.

 When you want to entirely ignore Validation Groups, set the ChangeMonitor.UseValidationGroups property to
False.

 When you want to use a different grouping model, set the ChangeMonitor.UseValidationGroups property to False.
Then assign the ChangeMonitorGroups property on each data entry control and button to new group names.

If you are not using Validation Groups, you can still use the ChangeMonitorGroups property to group certain data entry
controls with buttons.

Example

Suppose you have a grid where the user can edit a row, or add a new record in the footer.

Start by entirely focusing on validation. You have two validation groups: row being edited (EditItemTemplate) and row being
inserted (FooterTemplate).

Go through each of these templates and assign the Group property on each Validator and button to one of the two group
names. (Proposed names: "Edit", "Insert")

If you have a ValidationSummary control, give its Group property the value of "*" (for all groups) or "Edit|Insert"
(specifies a list of groups).

Make sure that validation works correctly.

Now let's look at the ChangeMonitor. By default, it groups buttons and edit controls by the names supplied using Validation
Groups. Do you want the ChangeMonitor to work separately for Edit and Insert rows? If so, it is correctly setup. An edit in
each row will only update its own buttons.

If not, ChangeMonitor should have its own grouping, using the ChangeMonitorGroup property on edit controls,
NativeControlExtender (for non-DES edit controls) and buttons.

Set ChangeMonitor.UseValidationGroups to TrueFalseDefault.False on either PeterBlum.DES.Globals.Page or
the PageManager control.

In both cases, consider setting ChangeMonitor.ClearIfAllValid to TrueFalseDefault.True on either
PeterBlum.DES.Globals.Page or the PageManager control.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 267 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Properties of the PeterBlum.DES.Globals.Page.ChangeMonitor
The ChangeMonitor property, found on the PageManager control and PeterBlum.DES.Globals.Page property, provides
properties that enable and configure the ChangeMonitor feature.

See “Using the ChangeMonitor”.

 Enabled (enum PeterBlum.DES.TrueFalseDefault) – Determines if the ChangeMonitor is enabled. When it’s enabled,
controls will automatically start monitoring changes.

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True - Indicates the ChangeMonitor is enabled.

o False - Indicates the ChangeMonitor is disabled.

o Default - Use the value from the global setting DefaultChangeMonitorEnabled to determine if it’s enabled
or not. DefaultChangeMonitorEnabled is set in the Global Settings Editor and defaults to false
(disabled).

It defaults to TrueFalseDefault.Default.

 UseValidationGroups (enum PeterBlum.DES.TrueFalseDefault) – Determines if the Validation Group system provide
group names in addition to group names from the ChangeMonitorGroups property on various controls.

When Controls grouped by validation group do not define the right group for monitoring, set this property to
TrueFalseDefault.False.

Changes are monitored by group names which can come from two sources: the ChangeMonitorGroups and Group
properties on various controls. Validation groups already provide an effective group naming system and are applied
when this is TrueFalseDefault.True. However, controls marked by validation group do not always define the
right group for change monitoring. So use this to turn off validation group names as the source of changes and only use
the ChangeMonitorGroups property on the data entry controls and buttons.

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True - Indicates validation group names are used in addition to the ChangeMonitorGroups properties. If the
control defines both a value in Group and ChangeMonitorGroups, they are both used.

o False - Indicates validation group names are not used. Only the ChangeMonitorGroups properties are used.

o Default - Use the value from the global setting DefaultChangeMonitorUseValidationGroups to determine
if it’s enabled or not. DefaultChangeMonitorUseValidationGroups is set in the Global Settings Editor
and defaults to true (enabled).

It defaults to TrueFalseDefault.Default.

 MonitorKeystrokes (enum PeterBlum.DES.TrueFalseDefault) – Controls that are edited through the keyboard can mark
their change monitor group as changed as soon as the user changes the control.

Most controls tell the change monitor they are changed after an edit is completed, such as using the onclick or onchange
event. Typing can enhance the user experience and enable a button so the user can type ENTER within the field and hit
the button.If the button was disabled while focus is in the textbox, it would not press the button.

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True - Enables this feature.

o False - Disables this feature.

o Default - Use the value from the global setting DefaultChangeMonitor_MonitorKeystrokes to determine
if it’s enabled or not. DefaultChangeMonitor_MonitorKeystrokes is set in the Global Settings Editor and
defaults to true (enabled).

It defaults to TrueFalseDefault.Default.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 268 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 ClearIfAllValid (enum PeterBlum.DES.TrueFalseDefault) – Useful if the same page is used for multiple records. When
there are no validation errors after a postback, that is the indication that the change monitor should clear its changed
state.

On a post back, the state of the change monitor is preserved so that groups known as changed retain that state. This helps
with autopostback and normal postbacks where validation errors are detected on the client-side.

While you can manually clear groups with the ClearChanges() and ClearChangesOnAllGroups() methods,
this can automatically clear the group just validated if no validation error is found.

When true, if the page was validated using page-level validation, the validation group that was used is used by the
change monitor to clear its own groups. If page-level validation did not occur, the state of the change monitor remains
the same. Page-level validation requires either the CausesValidation property to be true on the submit control or a call
to PeterBlum.DES.Globals.Page.Validate().

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True - Enables this feature.

o False - Disables this feature.

o Default - Use the value from the global setting DefaultChangeMonitorClearIfAllValid to determine if it’s
enabled or not. DefaultChangeMonitorClearIfAllValid is set in the Global Settings Editor and defaults to
false (disabled).

It defaults to TrueFalseDefault.Default.

 OnChangeFunctionName (string) – Assign to the name of a JavaScript function that will be called as the change
monitor first detects a change or gets cleared. See “Using your own JavaScript Code”.

When "", no function is set up. It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 269 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ChangeMonitor Server Side Methods
These methods are found on the PeterBlum.DES.Globals.Page.ChangeMonitor object. (If you are using the
PageManager, it also has a ChangeMonitor object with these methods but they should not be used.)

ChangeMonitor.SetChanged() method

Indicates that a group is already changed.

[C#]

void SetChanged(string pGroupName)

[VB]

Sub SetChanged(ByVal pGroupName As String)

Parameters

pGroupName

Specify the ChangeMonitor group name that should be marked as changed.

Use "" when you are not using any groups.

It does not support a pipe delimited group list or “*” for all groups.

ChangeMonitor.SetChangedOnAllGroups() method

Indicates that all groups are already changed.

[C#]

void SetChangedOnAllGroups()

[VB]

Sub SetChangedOnAllGroups()

ChangeMonitor.ClearChanged() method

Indicates that a group is not changed.

[C#]

void ClearChanged(string pGroupName)

[VB]

Sub ClearChanged(ByVal pGroupName As String)

Parameters

pGroupName

Specify the ChangeMonitor group name that should be marked as unchanged.

Use "" when you are not using any groups.

It does not support a pipe delimited group list or “*” for all groups.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 270 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ChangeMonitor.ClearChangedOnAllGroups() method

Indicates that all groups are already changed.

[C#]

void ClearChangedOnAllGroups()

[VB]

Sub ClearChangedOnAllGroups()

ChangeMonitor.HasChanged() method

Indicates if the specified group is marked as changed. Evaluates a single group name, pipe delimited list of group names, or
"*" to determine if a group is changed. So long as one group name matches to the known groups changed, it is considered
changed.

[C#]

bool HasChanged(string pGroupName)

[VB]

Function HasChanged(ByVal pGroupName As String) As Boolean

Parameters

pGroupName

Specify the ChangeMonitor group name to be evaluated.

Use "" when you are not using any groups.

Supports a pipe delimited group list and “*” for all groups.

Return value

true when any group requested is changed. false when no changes are detected.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 271 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

ChangeMonitor JavaScript Functions
When a control does not use the DHTML onchange event to notify of changes, you can write JavaScript code that is called
by the control’s alternative “on change” functionality. (Most third party controls provide an API that notifies you of a
change.) Your JavaScript will call the DES_CMonSet() function with the ChangeMonitor group name.

function DES_CMonSet(pGroup)

Indicates the specified ChangeMonitor group name has been changed.

Parameters

pGroupName

MUST BE uppercase.

Specify the ChangeMonitor group name to be evaluated.

Use "" when you are not using any groups.

Supports a pipe delimited group list and “*” for all groups.

function DES_CMonClear(pGroup)

Indicates the specified ChangeMonitor group name has not been changed.

Parameters

pGroupName

MUST BE uppercase.

Specify the ChangeMonitor group name to be evaluated.

Use "" when you are not using any groups.

Supports a pipe delimited group list and “*” for all groups.

function DES_CMonIsChanged(pGroup)

Indicates the state of the specified ChangeMonitor group name.

Parameters

pGroupName

MUST BE uppercase.

Specify the ChangeMonitor group name to be evaluated.

Use "" when you are not using any groups.

Supports a pipe delimited group list and “*” for all groups.

Return value

true when any group requested is changed. false when no changes are detected.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 272 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Direct Keystrokes to Click Buttons
DES’s TextBoxes and the MultiSegmentDataEntry control offer the EnterSubmitsControlID property, which lets you direct
the ENTER key to click a specific button or control. It’s useful when you have several Submit buttons on the page, each with
their own task.

Additionally, the NativeControlExtender control and
PeterBlum.DES.Globals.Page.RegisterKeyClicksControl() let you attach this capability to any control.
This feature has several advantages:

 It allows you to define the keystroke that clicks the button. For example, ESC can hit a “Cancel” button. Only applies to
the RegisterKeyClicksControl()

 Instead of setting it up for individual controls, you can set it up for a group of controls by attaching this to a container
control, like a Panel or Table. The browsers are designed to let the onkeypress event, used here, to “bubble up” until
consumed (which is what the container will do).

The client-side code calls the click() method on the control. This will run the control’s onclick event. For a <input
type='submit'> control, request that it submits the page. Other controls that have a call to __doPostBack() in their
onclick event will attempt to submit the page too. (They will all validate if the submit control is set up to validate.)

You have the option of moving the focus from the data entry field to the button as a way to provide visual feedback to which
button was clicked.

Click on any of these topics to jump to them:

 Using the NativeControlExtender

 Using the RegisterKeyClicksControl() Method

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 273 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the NativeControlExtender
1. Set the ControlIDToExtend to the control that intercepts the keystroke. If several controls need to click the same button

and they are all contained in a tag like a <div>, <p>, or <table>, you can just use the container control’s tag. It will
capture the keystroke for all of its child controls.

The selected controls must have runat=server and an ID attribute.

2. Determine the control whose click() method will be invoked. Set EnterSubmitsControlID to that control.

There are a lot of controls that support click(), although they vary by browser. In addition to Buttons and
ImageButtons, typical cases are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all
support the click() method on the same control. Here are the differences:

 Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla, FireFox, Netscape 7, and
Safari do not.

 All support checkboxes and radiobuttons. However, Mozilla, FireFox, and Netscape 7 always remove the focus from
the current field even if you don’t set this feature up to move the focus (the focus is gone, not moved)

 All support Buttons the same way. This is the best choice for a control to click.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 274 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Using the RegisterKeyClicksControl() Method
1. Determine which data entry controls should use this feature when they have focus. If they are all contained in a tag like a

<div>, <p>, or <table>, you can just use the container control’s tag. It will capture the keystroke for all of its child
controls.

The selected controls must have runat=server and an ID attribute.

2. Determine the keystroke. JavaScript uses numeric values called “keycodes” that often match to the ASCII code table but
not always. ENTER (13), ESC (27), and most characters from SPACE (32) through TILDE (~) (126) are the same.

You can research the keycodes by adding a TextBox with this code:

TextBox1.Attributes.Add("onkeypress", "alert(event.keyCode);")

Then type into the textbox to see the keycodes.

3. Determine the control whose click() method will be invoked.

There are a lot of controls that support click(), although they vary by browser. In addition to Buttons and
ImageButtons, typical cases are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all
support the click() method on the same control. Here are the differences:

 Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla, FireFox, Netscape 7, and
Safari do not.

 All support checkboxes and radiobuttons. However, Mozilla, FireFox, and Netscape 7 always remove the focus from
the current field even if you don’t set this feature up to move the focus (the focus is gone, not moved)

 All support Buttons the same way. This is the best choice for a control to click.

4. In Page_Load() or a post back event handler, call the
PeterBlum.DES.Globals.Page.RegisterKeyClicksControl() method. See below.

http://www.asciitable.com/�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 275 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

PeterBlum.DES.Globals.Page.RegisterKeyClicksControl Method
Sets up JavaScript that intercepts a keystroke and fires the click() method of a control. For example, monitor ENTER
keys and fire a Submit button to validate and submit the page.

Call it within Page_Load() or post back event handler methods.

[C#]

public void RegisterKeyClicksControl(Control pControlToMonitor,
 Control pControlToClick, int pKeyCode,
 bool pSetFocus)

[VB]

Public Sub RegisterKeyClicksControl(ByVal pControlToMonitor As Control,
 ByVal pControlToClick As Control, ByVal pKeyCode As Integer,
 ByVal pSetFocus As Boolean)

Parameters

pControlToMonitor

The control that will monitor keystrokes. Usually a data entry control or a container control.

Note: The control must have runat=server and an ID attribute. Usually you can use Page.FindControl("ID") to
retrieve the control’s object.

pControlToClick

The control whose client-side click() method will be fired. Buttons, ImageButtons, LinkButtons, and
HyperLinks are some of the most common controls for this because they fire commands.

Note: The control must have runat=server and an ID attribute. Usually you can use Page.FindControl("ID") to
retrieve the control’s object.

pKeyCode

Keycodes are client-side values returned by the event object's keycode attribute. 13 is ENTER; 27 is ESC. The
user can research other keystrokes by adding a TextBox with this code:

TextBox1.Attributes.Add("onkeypress", "alert(event.keyCode);")

Then type into the textbox to see the keycodes.

pSetFocus

When true, it sets focus to the control (if possible) prior to clicking it. This shows the user what they clicked better
but moves the focus from the current field. When false, focus does not move.

Example

A group of textboxes are contained in a Panel called Panel1. The panel contains two Buttons, SubmitBtn and CancelBtn.
When ENTER is typed, click SubmitBtn. When ESC is typed, click CancelBtn. Set focus to the button as it clicks.

This code is in Page_Load():

[C#]

PeterBlum.DES.Globals.Page.RegisterKeyClicksControl(Panel1, SubmitBtn, 13, true);
PeterBlum.DES.Globals.Page.RegisterKeyClicksControl(Panel1, CancelBtn, 27, true);

[VB]

PeterBlum.DES.Globals.Page.RegisterKeyClicksControl(Panel1, SubmitBtn, 13, True)
PeterBlum.DES.Globals.Page.RegisterKeyClicksControl(Panel1, CancelBtn, 27, True)

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 276 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Custom Submit Function
ASP.NET provides the Page.RegisterOnSubmitStatement() method to add code that will run when a submit
control is fired. It has limitations that DES addresses with the
PeterBlum.DES.Globals.Page.CustomSubmitFunctionName property addresses.

 It is connected to the validation process. You determine if you code executes before or after Validation.

 It can stop the page from submitting by returning false. If it occurs before Validation, it will prevent validation too.

 It works with any control that submits the page and is attached to DES’s Validators.

For example, after validating the page, display an absolutely positioned <div> that tells the user to wait. You would have
already added the <div> to the page and made its style="visibility:hidden;display:none". You add JavaScript to display the
<div> after validation has occurred.

Any submit control that has its CausesValidation property set to true will invoke your function if supplied.

Click on any of these topics to jump to them:

 Using The Custom Submit Function

 Page-Level Properties

Using The Custom Submit Function
Your JavaScript code should be contained in a function that has a specific parameter list and returns a Boolean value.

Your function should take one parameter, the group name (an uppercase string), which you can use if your code depends on a
group. Your function should return true to continue submitting or false to stop submitting the page.

function MySubmitFnc(pGroup)
{
 // do your work
 if (continue)
 return true;
 else
 return false;
}

In Page_Load(), set the function name in the PeterBlum.DES.Globals.Page.CustomSubmitFunctionName property.
Determine whether the function is run before or after validation with the PeterBlum.DES.Globals.Page.SubmitOrder
property.

Example

This code appears in Page_Load():

[C#]

PeterBlum.DES.Globals.Page.CustomSubmitFunctionName = "MySubmitFnc";
PeterBlum.DES.Globals.Page.SubmitOrder =
 PeterBlum.DES.SubmitOrderType.ConfirmValidateCustom;

[VB]

PeterBlum.DES.Globals.Page.CustomSubmitFunctionName = "MySubmitFnc"
PeterBlum.DES.Globals.Page.SubmitOrder = _
 PeterBlum.DES.SubmitOrderType.ConfirmValidateCustom

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuipageclassregisteronsubmitstatementtopic.asp�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 277 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Page-Level Properties
The following properties are on the PeterBlum.DES.Globals.Page object. You set them in the Page_Load() method.

 CustomSubmitFunctionName (string) – Use this to add your own JavaScript code into the page submission process.
Any submit control that has its CausesValidation property set to true will invoke your function if supplied.

Your function should take one parameter, the group name (an uppercase string), which you can use if your code depends
on a group. Your function should return true to continue submitting or false to stop submitting the page. This
property should only contain the name of the function. See “Using The Custom Submit Function”.

Note: The group name property will always be uppercase, even when the user entered it with lowercase. Be sure that you
use an uppercase group name when you compare to the parameter.

The custom submit function is part of a group of actions that occur during submission: validation, confirm message and
custom submit function. Use the PeterBlum.DES.Globals.Page.SubmitOrder property to determine the order of these
actions.

When this property is "", no custom submit function is defined.

It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Example
function MySubmitFnc(pGroup)
{
 // do your work
 if (continue)
 return true;
 else
 return false;
}

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 278 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Additional Topics for Using These Controls
This section covers a variety of special cases when using these controls.

Click on any of these topics to jump to them:

 Page Level Properties and Methods

 JavaScript Support Functions

 Adding Your JavaScript to the Page

These topics are found in the General Settings Guide:

 Using these Controls with AJAX

 The ViewState and Preserving Properties for PostBack

 Establishing Default Localization for the Web Form

 Using Style Sheets

 The String Lookup System

 The Global Settings Editor

 Using Server Transfer and Using Alternative HttpHandlers

 Using a Redistribution License

 Browser Support and The TrueBrowser Class

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 279 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Page Level Properties and Methods
The PeterBlum.DES.Globals.Page object contains several properties that affect all controls on the page. They include
setting the CultureInfo object, getting the Browser details, and enabling JavaScript.

The Page property on PeterBlum.DES.Globals uses the class PeterBlum.DES.DESPage. When accessed through
PeterBlum.DES.Globals.Page, you will have an object that is unique to the current thread. It is really a companion to the
Page object of a web form, hosting details related to DES. Properties set on it will not affect any other request for a page.

Properties on PeterBlum.DES.Globals.Page
You generally assign properties to PeterBlum.DES.Globals.Page in your Page_Load() method. Your post back event
handler methods can also assign properties.

 CultureInfo (System.Globalization.CultureInfo) – Cultures define date, time, number and text formatting for a program
to follow. DES uses this value within its data types (PeterBlum.DES.DESTypeConverter classes) as it translates
between strings and values.

The CultureInfo property uses CultureInfo.CurrentCulture by default. This value is determined by the web server’s .Net
settings, the web.config’s <globalization> tag, or the <% @Page %> tag with the Culture property.

Web.Config setting – Affects the entire site
<globalization Culture="en-US" [other properties] />

Page Setting – Affects a page
<%@Page Culture="en-US" [other page properties] %>

You can set it programmatically in your Page_Load() method or in the Application_BeginRequest()
method of Global.asax. Use the .Net Framework method CultureInfo.CreateSpecificCulture(). For
example, assigning the US culture looks like this:

PeterBlum.DES.Globals.Page.CultureInfo =
 CultureInfo.CreateSpecificCulture("en-US")

Changing the properties of CultureInfo programmatically

Assign values to PeterBlum.DES.Globals.Page.CultureInfo. Here are some examples:

 [C#]

System.Globalization.DateTimeFormatInfo vDTFI =
 PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat;
vDTFI.ShortDatePattern = "MM-dd-yyyy";
vDTFI.DateSeparator = "-";
System.Globalization.NumberFormatInfo vNFI =
 PeterBlum.DES.Globals.CultureInfo.NumberFormat;
vNFI.DecimalSeparator = ".";
vNFI.CurrencySymbol = "€";

 [VB]

Dim vDTFI As System.Globalization.DateTimeFormatInfo = _
 PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat
vDTFI.ShortDatePattern = "MM-dd-yyyy"
vDTFI.DateSeparator = "-"
Dim vNFI As System.Globalization.NumberFormatInfo = _
 PeterBlum.DES.Globals.CultureInfo.NumberFormat
vNFI.DecimalSeparator = "."
vNFI.CurrencySymbol = "€"

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemglobalizationcultureinfoclasstopic.asp�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/ydy4x04a(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.createspecificculture(vs.71).aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 280 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

 HintManager (PeterBlum.DES.HintManager) – Properties used by Interactive Hints. See “Properties on the
PeterBlum.DES.Globals.Page.HintManager Property”.

 ChangeMonitor (PeterBlum.DES.ChangeMonitor) – Properties used by the ChangeMonitor. See “Properties of the
PeterBlum.DES.Globals.Page.ChangeMonitor”.

 SubmitPageManager (PeterBlum.DES.SubmitPageManager) – Properties used by Enhanced Buttons. See
“Programmatically Adding These Features to Non-DES Buttons”.

 Browser (PeterBlum.DES.TrueBrowser) – Detects the actual browser that is requesting the page and configures the
HTML and JavaScript code returned to work with that browser. If the browser doesn’t support the client-side scripting
code for FieldStateControllers, the TrueBrowser.SupportsFieldStateControllers property is false and they are
disabled. See “Browser Support” in the General Features Guide.

 JavaScriptEnabled (Boolean) – Determines if the browser really has JavaScript enabled. It automatically detects if
JavaScript is enabled after the first post back for a session. Prior to that first post back, it is true. After that, it is true
when JavaScript is enabled and false when it is not.

When false, the page will be generated as if the browser does not support JavaScript. No controls will output
JavaScript and may draw themselves differently, knowing that a client-side only feature that doesn’t work is
inappropriate to output.

This feature stores its state in the Session collection. If the Session is not working or has been cleared, it will reset to
true and attempt to resolve the JavaScript state on the next post back.

If you do not want this detection feature enabled, set DetectJavaScript to false.

You can set this value directly in Page_Load(). It lets you turn off all of DES’s JavaScript features on demand. For
example, your customers can identify if they use JavaScript on their browser in a configuration screen. It only affects the
current page so set it on each page where needed.

 DetectJavaScript (Boolean) – When true, the JavaScriptEnabled property will monitor for JavaScript support. When
false, it will not.

It defaults to the global DefaultDetectJavaScript property, which defaults to true. You set DefaultDetectJavaScript
with the Global Settings Editor. (For details on the Global Settings Editor, see “Global Settings: The Editor and
custom.DES.config File” in the General Features Guide.)

 EnableButtonImageEffects (enum PeterBlum.DES.EnableButtonImageEffects) – Many buttons can show up to 3
images: normal, pressed, and mouseover. By default, these effects are set up based on the presence of the actual files.
However, DES cannot always see the files are present. For example, the URL uses http://.
EnableButtonImageEffects lets you to specify that the images are present or not.

The enumerated type has these values:

o None - Never use image effects.

o Always - Always use image effects. Assume that all image files are available

o Auto - Detect the files, if possible before using them

o Pressed - Always set up for pressed. Never set up for mouse over

o MouseOver - Always set up for mouseover. Never set up for pressed

It defaults to EnableButtonImageEffects.Auto.

 PageIsLoadingMsg (string) – The error message to display on the client-side if the user interacts with this control
before it is initialized. It defaults to “Page is loading. Please wait.”.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 281 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Validation Properties
These properties are only used with the DES Validation Framework.

 ConfirmMessage (string) – Allows you to show an OK/Cancel message box when the user submits the page, regardless
of if there are any errors found. If they answer OK, submit is continued. With Cancel, it is cancelled. When this is blank,
no alert is shown.

DES submit controls can override this with their own ConfirmMessage property . See “Enhanced Buttons”.

The alert appears based on the group being submitted. It must match ConfirmMessageGroup.

Submit controls whose CausesValidation property is false will not show this messagebox.

The confirm message is part of a group of actions that occur during submission: validation, confirm message and custom
submit function. Use the SubmitOrder property to determine the order of these actions.

It defaults to the DefaultConfirmMessage property in the Global Settings Editor, which defaults to "".

 ConfirmMessageLookupID (string) – Gets the value for ConfirmMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of ConfirmMessages. If no match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to the DefaultConfirmMessageLookupID property in the Global Settings Editor, which defaults to "".

 ConfirmMessageGroup (string) – When using the ConfirmMessage property, use this property to determine which
group shows this message. When "", it will match group names that are blank. If this is "*", it will match all group
names.

It defaults to the DefaultConfirmMessageGroup property in the Global Settings Editor, which defaults to "".

 SubmitOrder (enum PeterBlum.DES.SubmitOrderType) – Determines the order of these three client-side actions when
the page is submitted:

o Validation of fields associated with submit button’s group

o Confirm message when the ConfirmMessage property is set up.

o Custom submit function when the CustomSubmitFunctionName property is set up.

The enumerated type PeterBlum.DES.SubmitOrderType has these values:

o ConfirmCustomValidate – Confirm message, Custom submit function, Validate.

o ConfirmValidateCustom

o CustomConfirmValidate

o CustomValidateConfirm

o ValidateConfirmCustom

o ValidateCustomConfirm

It defaults to the DefaultSubmitOrder property in the Global Settings Editor, which defaults to
SubmitOrderType.ConfirmCustomValidate.

Note: When the page posts back to the server, it will once again run validation. Server-side validation is not affected
by this property. It always occurs after all client-side actions.

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 282 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

JavaScript Support Functions
This section shows how to communicate with these controls from your own JavaScript.

DES supplies the following client-side functions to any page that includes these controls.

Click on any of these topics to jump to them:

 General Utilities

 Running FieldStateControllers On Demand

 Running CalculationControllers On Demand

 Show and Hide the Hint On Demand

 ChangeMonitor JavaScript Functions

 Custom Submit Function

General Utilities

function DES_GetById(pID)

Returns the DHTML element associated with the ID supplied. This is a wrapper around the functions document.all[]
and document.GetElementById() so that you can get the field using browser independent code.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns the field object or null.

Example

var vOtherField = DES_GetById('DateTextBox1');

function DES_ParseInt(pText)

It converts it into an integer number and returns the number. While the JavaScript parseInt() function is supposed to do
this, when there is a lead zero, parseInt() believes the number is octal (base 8). Thus, 08 is returned as 10. Dates often
have lead zeros. So call this instead of parseInt(). Internally, it calls parseInt() after stripping off the lead zeroes.

Parameters

pText

The string to convert to an integer.

Return value

An integer. If the text represented a decimal value, it will return the integer portion. If it cannot be converted, it returns NaN
which you can detect with the JavaScript function isNaN(value).

Example

var vNumber = DES_ParseInt("03"); // returns 3
if (!isNaN(vNumber))
 // do something with vNumber

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 283 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

function DES_SetFocus(pID)

Sets focus to the HTML element whose ID is passed in. It will not set focus if the element is not present or it’s illegal to set
focus (such as its invisible). It will also select the contents of a textbox, if the ID is to a textbox.

It calls your custom focus function defined in PeterBlum.DES.Globals.Page.SetFocusFunctionName to assist it to setting
focus. (See “Properties on PeterBlum.DES.Globals.Page” in the General Features Guide.)

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns the field object or null.

Example

DES_SetFocus('DateTextBox1');

function DES_Round(pValue, pMode, pDecimalPlaces)

Rounds a decimal value in several ways.

Parameters

pValue

The initial decimal value.

pMode

An integer representing one of the rounding modes:

0 = Truncate – Drop the decimals after pDecimalPlaces

1 = Currency – Round to the nearest even number

2 = Point5 – Round to the next number if .5 or higher; round down otherwise

3 = Ceiling – Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number closest to zero.

4 = NextWhole - Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number farthest from zero.

pDecimalPlaces

The number of decimal places to preserve. For example, when 2, it rounds based on the digits after the 2nd decimal
place.

Return value

Returns the rounded decimal value.

Example

var PI = 3.14159;
var vResult = DES_Round(PI, 0, 0); // Truncate: returns 3
vResult = DES_Round(PI, 1, 2); // Currency: returns 3.14
vResult = DES_Round(PI, 3, 0); // Ceiling: returns 4

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 284 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

function DES_Trunc(pValue)

Returns the integer part of the a decimal value. Converts the type from float to integer.

Parameters

pValue

The initial decimal value.

Return value

Returns the integer part of the a decimal value. Converts the type from float to integer.

Example

var PI = 3.14159;
var vResult = DES_Trunc(PI); // returns 3

function DES_SetInnerHTML(pField, pHTML)

A browser independent way to update the inner HTML of a tag. Usually you will define a tag with an ID. The inner
HTML of that tag will be updated. A System.Web.UI.WebControls.Label creates such a tag and its
ClientID is the ID to find the tag on the page.

Parameters

pField

The DHTML element for the HTML table. Use DES_GetById() to convert a ClientID into an DHTML element.
See “Embedding the ClientID into your Script”.

pHTML

The inner HTML.

Example

DES_SetInnerHTML(DES_GetById('Label1'), 'New Text');

function DES_RERpl(pText, pFind, pReplace)

Replaces text in a string. Internally, it uses a regular expression to do a case insensitive match for the text pFind and replaces
it with pReplace.

Parameters

pText

The text to be modified.

pFind

The text to find within pText.

pReplacet

The text to replace.

Return value

The updated value of pText.

Example

var vText = "This is {0}.";
vText = DES_RERpl(vText, '{0}', 'replaced text');

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 285 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Adding Your JavaScript to the Page
Some of DES’s features allow you to write your own JavaScript. When writing JavaScript, you can put it in three places:

 Directly on the page. It is typically placed before the <form> tag. Be sure to enclose it in <script> tags like this:

<script type='text/javascript' language='javascript' >
<!--
add your function code here
// -->
</script>

 In your Page_Load() code using the Page.RegisterClientScriptBlock() method. You must still include
the <script> tags in your code:

[C#]

uses System.Text;
...
protected void Page_Load(object sender, System.EventArgs e)
{
 StringBuilder vScript = new StringBuilder(2000);
 vScript.Append("<script type='text/javascript' language='javascript' >\n");
 vScript.Append("<!-- \n");
 vScript.Append(add your function code here);
 vScript.Append("// -->\n</script>\n");
 RegisterClientScriptBlock("KeyName", vScript.ToString());
}

[VB]

Imports System.Text
...
Protected Sub Page_Load(ByVal sender As object, _
 ByVal e As System.EventArgs)

 Dim vScript As StringBuilder = New StringBuilder(2000)
 vScript.Append("<script type='text/javascript' language='javascript' >")
 vScript.Append("<!-- ")
 vScript.Append(add your function code here)
 vScript.Append("// --></script>")
 RegisterClientScriptBlock("KeyName", vScript.ToString())
End Sub

 In a separate file, dedicated to JavaScript. This file doesn’t need <script> tags. Instead, the page needs
<script src= > tags to load it. The script tags should appear before the <form> tag.

<script type='text/javascript' language='javascript' src='url to the file' />

Embedding the ClientID into your Script
If your scripts are embedded into your web form, you can use this syntax to get the ClientID:

'<% =ControlName.ClientID %>'

For example:

DES_GetById('<% =ControlName.ClientID %>');

If you create the script programmatically, simply embed the ClientID property value. For example:

vScript = "DES_GetById('" + ControlName.ClientID + "');"

http://msdn2.microsoft.com/en-us/library/system.web.ui.page.registerclientscriptblock(vs.71).aspx�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 286 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Debugging Your JavaScript

Using Internet Explorer

You can debug JavaScript in Internet Explorer by using Visual Studio as your debugger. Open the Tools; Internet Options
menu command and select the Advanced tab. Then unmark Disable Script Debugging.

After launching your web page from Visual Studio, switch back to Visual Studio. Then select Debug; Windows; Script
Explorer (or Running Documents in VS2002/3) from the menubar. Double-click on the filename containing the JavaScript
function and set a breakpoint inside the function. Now resume using your browser.

Using FireFox

Use the FireBug debugger for FireFox. Get it here: https://addons.mozilla.org/en-US/firefox/addon/1843

https://addons.mozilla.org/en-US/firefox/addon/1843�

Peter’s Interactive Pages a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 287 of 287
http://www.PeterBlum.com For technical support and other assistance, see page 8

Troubleshooting
Here are some issues that you may run into. Remember that technical support is available from support@PeterBlum.com. We
encourage you to use this knowledge base first.

This guide contains problems specific to the Peter’s Interactive Pages module. Please see the “Troubleshooting” section of
the General Features Guide for an extensive list of other topics including “Handling JavaScript Errors” and “Common
Error Messages”.

None specific to this module. Please use the General Features Guide.

mailto:support@PeterBlum.com�

	License Information
	Platform Support
	Technical Support and Other Assistance
	Troubleshooting Section of this Guide
	Developer’s Kit
	PeterBlum.Com MessageBoard
	Getting Product Updates
	Technical Support

	What does Peter’s Data Entry Suite Do?
	Peter’s Interactive Pages Overview
	FieldStateControllers Overview
	CalculationController Overview
	TextCounter Overview
	ContextMenu Overview
	Interactive Hints Overview
	Enhanced ToolTips Overview
	Enhanced Buttons Overview
	ChangeMonitor Overview
	Direct Keystrokes to Click Buttons Overview

	FieldStateController and MultiFieldStateController Controls
	Features
	Using the FieldStateControllers
	The Condition
	Controls That Run The FieldStateController
	Controls To Change
	Attribute Values To Change
	Extending the Attributes with Your Own Code
	Client-Side Function: The Run Function
	Server Side Event Handler

	Updating Validators
	Changing Visibility on a Complex Control
	Solution

	Toggling States
	Running FieldStateControllers On Demand
	Controls That Have Child Controls
	GetChild Method
	Installing the GetChild Method

	Example: FieldStateController
	Example: MultiFieldStateController
	Adding the FieldStateController Control
	ASP.NET Text Formatting for the ConditionTrue and ConditionFalse Properties

	Adding the MultiFieldStateController Control
	Properties of FieldStateController And MultiFieldStateController
	Invoke the Change Properties
	Controls To Change Properties
	Attributes To Change Properties
	Properties of ConditionTrue and ConditionFalse

	Update Validators Properties
	When to Use the Control Properties
	Behavior Properties

	FSCOnCommand and MultiFSCOnCommand Controls
	Features
	Using the FSCOnCommand Controls
	Controls That Run The FSCOnCommand Control
	Controls To Change
	Attribute Values To Change
	Updating Validators
	Changing Visibility on a Complex Control
	Example: The DateTextBox control
	Solution

	Selectively Running the Control
	Example

	Example: FSCOnCommand
	Example: MultiFSCOnCommand
	Adding the FSCOnCommand Control
	Visual Studio and Visual Web Developer Design Mode Users
	Text Entry Users
	Programmatically Creating the Control

	Adding the MultiFSCOnCommand Control
	Visual Studio and Visual Web Developer Design Mode Users
	Text Entry Users
	Programmatically Creating the Control

	Properties of FSCOnCommand And MultiFSCOnCommand
	Invoke the Change Properties
	Controls To Change Properties
	Attributes To Change Properties
	Update Validators Properties
	When To Use The Control Properties
	Behavior Properties

	CalculationController
	Features
	Using the CalculationController
	Creating the Expression: The CalcItem classes
	PeterBlum.DES.NumericTextBoxCalcItem
	PeterBlum.DES.ConstantCalcItem
	PeterBlum.DES.ListConstantsCalcItem
	PeterBlum.DES.CheckStateCalcItem
	PeterBlum.DES.ParenthesisCalcItem
	PeterBlum.DES.ConditionCalcItem
	PeterBlum.DES.CalcControllerCalcItem
	General Guidelines for CalcItem objects

	Displaying The Result
	Using the Result in Validators and Conditions
	Using the Result in Your Server-Side Code
	Running CalculationControllers On Demand

	Adding the CalculationController Control
	Properties on CalculationController
	Calculating The Value Properties
	Showing The Value Properties
	When to Use the Control Properties
	Behavior Properties

	Properties on CalcItem Classes
	Properties Common To All CalcItem Classes
	Properties for the PeterBlum.DES.NumericTextBoxCalcItem Class
	Properties for the PeterBlum.DES.ListConstantsCalcItem Class
	Properties for the PeterBlum.DES.CheckStateCalcItem Class
	Properties for the PeterBlum.DES.ConstantCalcItem Class
	Properties for the PeterBlum.DES.ParenthesisCalcItem Class
	Properties for the PeterBlum.DES.ConditionCalcItem Class
	Properties for the PeterBlum.DES.CalcControllerCalcItem Class
	Adding Custom Code to a CalcItem
	The Client-Side Function and the CustomCalcFunctionName Property
	The Server Side Event Handler and CustomCalculation Property
	Hooking up the Method to the CalcItem.CustomCalculation Property

	Subclassing CalculationController

	Interactive Hints
	Features
	When using Labels
	When using PopupViews
	Other ways to display Hints
	Interactively Customizing the Hint Text

	Using Interactive Hints
	Displaying Hints: The PeterBlum.DES.HintFormatter Class
	Page-Level Hint Settings: The PeterBlum.DES.Globals.Page.HintManager Property
	Showing Validation Errors In The Hints

	Adding HintFormatters to the SharedHintFormatters Property
	When using a PopupView: AddSharedHintPopupView()
	When using a Label on the Page: AddSharedHintOnPage()
	Using Your Own HintFormatter definition: AddSharedHintFormatter()

	Defining PopupViews
	View an existing definition
	Fields on the Initial View

	Edit a definition
	Add a definition
	Rename a definition
	Delete a definition
	Creating your own Callouts
	Adding your own Callouts to the PopupView Definition

	Using PopupViews
	Defining Hints shown on the Page
	Using a Label
	Using a Panel containing a Label
	Customize How Hints Appear: The Formatter Function

	Using Hints shown on the Page
	Customize the Text of the Hint: The Text Function
	Show and Hide the Hint On Demand
	Providing an Initialization Function
	Key Properties on the Hint Object (pHO parameter)

	Adding a Hint to any Control Programmatically:PeterBlum.DES.Globals.Page.AddHintToControl Method
	Properties for the PeterBlum.DES.HintFormatter Class
	Properties on the PeterBlum.DES.Globals.Page.HintManager Property
	Properties for the PeterBlum.DES.HintPopupView Class
	Overall Appearance Properties
	Header Properties
	Body Properties
	Footer Properties
	Callout Properties
	Positioning Properties
	Other Properties

	Enhanced ToolTips
	Features
	Using Enhanced ToolTips
	HintManager.AddToolTipPopupViewToControl() method

	TextCounter Control
	Features
	Using the TextCounter Control
	Connecting To a TextBox
	Establishing the Limits
	Setting the Text and Style Sheets
	Tokens in Messages

	Adding a TextCounter Control
	Properties of the TextCounter Control
	TextBox Properties
	Message Properties
	Appearance Properties
	Behavior Properties

	Context Menu Control
	Features
	Using the Context Menu
	Overall Appearance
	Menu Command Rows
	Providing a Script for your Command
	OnClickScript Property
	ProcessCommandFunctionName property
	Validating, Showing A Confirmation Message, and Posting Back
	Order of the Actions

	Appearance of Menu Command Rows
	Command Row
	Hiliting on MouseOver
	Label
	Command Key

	Adding a PeterBlum.DES.MenuCommandItem to the ContextMenu
	Properties for PeterBlum.DES.MenuCommandItem

	Menu Separator Rows
	Appearance of Menu Separator Rows
	Adding a PeterBlum.DES.MenuSeparator to the ContextMenu
	Properties for PeterBlum.DES.MenuCommandSeparator

	Menu Hint Rows
	Appearance of Menu Hint Rows
	Adding a PeterBlum.DES.MenuHint to the ContextMenu
	Properties for PeterBlum.DES.MenuHint

	Click Items: Adding Controls Which Popup The ContextMenu
	The PeterBlum.DES.ClickItem Class
	Inserting Variables Into Your Scripts
	Adding a PeterBlum.DES.ClickItem to the ContextMenu
	Properties for PeterBlum.DES.ClickItem

	Adding a Context Menu
	Complete Example
	Properties of the Context Menu
	Menu Structure Properties
	Menu Item Appearance Properties
	Overall Appearance Properties
	Popup Behavior Properties
	Behavior Properties
	Popup Location Properties

	Enhanced Buttons
	Features
	Using the Enhanced Buttons
	Adding an Enhanced Button
	Properties on Enhanced Buttons
	Behavior Properties
	ChangeMonitor Properties
	Validation Properties
	Hint and ToolTip Properties
	Appearance Properties

	Programmatically Adding These Features to Non-DES Buttons
	The PeterBlum.DES.SubmitBehavior Class
	Properties
	Constructors

	ChangeMonitor
	Features
	Using the ChangeMonitor
	The ChangeMonitor Property
	Changing the State of Buttons
	Using server side code

	Making Data Entry Controls Notify Changes
	Using the NativeControlExtender
	Using the ChangeMonitor.RegisterForChanges() Method

	Using the FieldStateController
	The PeterBlum.DES.ChangeMonitorCondition Class

	Using your own JavaScript Code
	Validation Group and ChangeMonitor Groups

	Properties of the PeterBlum.DES.Globals.Page.ChangeMonitor
	ChangeMonitor Server Side Methods
	ChangeMonitor JavaScript Functions

	Direct Keystrokes to Click Buttons
	Using the NativeControlExtender
	Using the RegisterKeyClicksControl() Method
	PeterBlum.DES.Globals.Page.RegisterKeyClicksControl Method
	Example

	Custom Submit Function
	Using The Custom Submit Function
	Example

	Page-Level Properties

	Additional Topics for Using These Controls
	Page Level Properties and Methods
	Properties on PeterBlum.DES.Globals.Page
	Validation Properties

	JavaScript Support Functions
	General Utilities

	Adding Your JavaScript to the Page
	Embedding the ClientID into your Script
	Debugging Your JavaScript
	Using Internet Explorer
	Using FireFox

	Troubleshooting
	Word Bookmarks
	TableOfContents
	DevelopersKit
	FSC_Overview
	FSC_Using
	RunFunctionName
	FSC_Adding
	MFSC_Adding
	FSC_Properties
	FSC_Condition
	FSC_ExtraControlsToRunThisAction
	FSC_ControlIDToChange
	MFSC_ControlConnections
	FSC_ConditionTrue
	FSC_ConditionFalse
	FSC_InvisiblePreservesSpace
	FSC_ValidateChangedControls
	FSC_UseValidationGroup
	FSC_ValidationGroup
	FSC_Enabler
	FSC_RunOnPageLoad
	FSC_UpdateWhileEditing
	FSCOnCmd_Overview
	FSCOnCmd_Using
	FSCOnCmd_Adding
	MFSCOnCmd_Adding
	FSCOnCmd_Properties
	FSCON_ControlIDToRunThisAction
	FSCON_ExtraControlsToRunThisAction
	FSCON_ControlIDToChange
	FSCON_ControlConnections
	FSCON_VisibleState
	FSCON_EnabledState
	FSCON_ReadOnly
	FSCON_CssClass
	FSCON_FieldValue
	FSCON_InnerHTML
	FSCON_URL
	FSCON_Checked
	FSCON_Other
	FSCON_InvisiblePreservesSpace
	FSCON_ValidateChangedControls
	FSCON_UseValidationGroup
	FSCON_ValidationGroup
	FSCON_Enabler
	Calc_Using
	NumericTextBoxCalcItem
	ConstantCalcItem
	ListConstantsCalcItem
	CheckStateCalcItem
	ParenthesisCalcItem
	ConditionCalcItem
	CalcControllerCalcItem
	Calc_Adding
	Calc_Properties
	Calc_Expression
	Calc_RoundMode
	Calc_Value
	Calc_ValueText
	Calc_IsValid
	Calc_ValidateOnCalc
	Calc_ShowValueControlID
	Calc_InvalidValueLabel
	Calc_InvalidValueCssClass
	Calc_DecimalPlaces
	Calc_LabelFormatThousandsSep
	Calc_LabelFormatCurrencySymbol
	Calc_LabelToken
	Calc_AutoShowValue
	Calc_ShowValueMethod
	Calc_Enabler
	Calc_ExtraControlsToRunThisAction
	CalcItem_Operator
	CalcItem_CustomCalcFunctionName
	CalcItem_TextBoxControlID
	CalcItem_InvalidIsZero
	CalcItem_BlankIsZero
	CalcItemList_Properties
	CalcItem_ListControlID
	CalcItem_ConstantWhenNoMatch
	CalcItem_ErrorWhenNoMatch
	CalcItem_ConstantsForSelectedIndexes
	CalcItemConst_Properties
	CalcItem_Constant
	CalcItemParen_Properties
	CalcItem_Expression
	CalcItemCond_Properties
	CalcItem_Condition
	CalcItem_ExpressionWhenTrue
	CalcItem_ExpressionWhenFalse
	CalcItem_CannotEvalMode
	CalcItem_InvalidWhenFalse
	CalcItemCalcCont_Properties
	CalcItem_ControlID
	CalcItemCC_InvalidIsZero
	Hints_Using
	PopupView_ViewCmd
	PopupView_EditCmd
	PopupView_AddCmd
	PopupView_RenameCmd
	PopupView_DeleteCmd
	Hints_AddingPopupViews
	Hints_AddingOnPage
	HintFormatter_Properties
	HintManager_Properties
	HintManager_SharedHintFormatters
	HintManager_HintsShowErrors
	HintManager_ToolTipsAsHints
	HintManager_EnableToolTipsUsePopupViews
	HintPopupView_Properties
	PopupView_HelpBehavior
	PopupToolTips_Using
	TextCounter_Using
	TextCounter_Adding
	TextCounter_Properties
	ContextMenu_Using
	ContextMenu_MenuCommandRows
	ContextMenu_MenuSeparatorRows
	ContextMenu_MenuHintRows
	ContextMenu_ClickItems
	ContextMenu_Adding
	ContextMenu_Properties
	CM_ProcessCommandFunctionName
	CM_EnableItemsFunctionName
	Buttons_Using
	Buttons_Adding
	Buttons_Properties
	Button_ConfirmMessage
	ChangeMonitorOnButton_Properties
	ChangeMonitor_Using
	ChangeMonitor_RegisterForChanges
	ChangeMonitor_Properties
	DES_CMonSet
	DESPage
	CultureInfoProperty
	JavaScriptEnabled
	DESPage_EnableButtonImageEffects
	DESPage_ConfirmMessage
	DESPage_SubmitOrder
	DES_GetById
	DES_ParseInt
	DES_Trunc
	DES_SetInnerHTML
	DES_RERpl

